Spaces:
Runtime error
Runtime error
File size: 11,749 Bytes
7629b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Modified from:
# https://github.com/anibali/pytorch-stacked-hourglass
# https://github.com/bearpaw/pytorch-pose
# Hourglass network inserted in the pre-activated Resnet
# Use lr=0.01 for current version
# (c) YANG, Wei
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.hub import load_state_dict_from_url
__all__ = ['HourglassNet', 'hg']
model_urls = {
'hg1': 'https://github.com/anibali/pytorch-stacked-hourglass/releases/download/v0.0.0/bearpaw_hg1-ce125879.pth',
'hg2': 'https://github.com/anibali/pytorch-stacked-hourglass/releases/download/v0.0.0/bearpaw_hg2-15e342d9.pth',
'hg8': 'https://github.com/anibali/pytorch-stacked-hourglass/releases/download/v0.0.0/bearpaw_hg8-90e5d470.pth',
}
class Bottleneck(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(inplanes)
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=True)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=True)
self.bn3 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1, bias=True)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.bn1(x)
out = self.relu(out)
out = self.conv1(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn3(out)
out = self.relu(out)
out = self.conv3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
return out
class Hourglass(nn.Module):
def __init__(self, block, num_blocks, planes, depth):
super(Hourglass, self).__init__()
self.depth = depth
self.block = block
self.hg = self._make_hour_glass(block, num_blocks, planes, depth)
def _make_residual(self, block, num_blocks, planes):
layers = []
for i in range(0, num_blocks):
layers.append(block(planes*block.expansion, planes))
return nn.Sequential(*layers)
def _make_hour_glass(self, block, num_blocks, planes, depth):
hg = []
for i in range(depth):
res = []
for j in range(3):
res.append(self._make_residual(block, num_blocks, planes))
if i == 0:
res.append(self._make_residual(block, num_blocks, planes))
hg.append(nn.ModuleList(res))
return nn.ModuleList(hg)
def _hour_glass_forward(self, n, x):
up1 = self.hg[n-1][0](x)
low1 = F.max_pool2d(x, 2, stride=2)
low1 = self.hg[n-1][1](low1)
if n > 1:
low2 = self._hour_glass_forward(n-1, low1)
else:
low2 = self.hg[n-1][3](low1)
low3 = self.hg[n-1][2](low2)
up2 = F.interpolate(low3, scale_factor=2)
out = up1 + up2
return out
def forward(self, x):
return self._hour_glass_forward(self.depth, x)
class HourglassNet(nn.Module):
'''Hourglass model from Newell et al ECCV 2016'''
def __init__(self, block, num_stacks=2, num_blocks=4, num_classes=16, upsample_seg=False, add_partseg=False, num_partseg=None):
super(HourglassNet, self).__init__()
self.inplanes = 64
self.num_feats = 128
self.num_stacks = num_stacks
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=True)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_residual(block, self.inplanes, 1)
self.layer2 = self._make_residual(block, self.inplanes, 1)
self.layer3 = self._make_residual(block, self.num_feats, 1)
self.maxpool = nn.MaxPool2d(2, stride=2)
self.upsample_seg = upsample_seg
self.add_partseg = add_partseg
# build hourglass modules
ch = self.num_feats*block.expansion
hg, res, fc, score, fc_, score_ = [], [], [], [], [], []
for i in range(num_stacks):
hg.append(Hourglass(block, num_blocks, self.num_feats, 4))
res.append(self._make_residual(block, self.num_feats, num_blocks))
fc.append(self._make_fc(ch, ch))
score.append(nn.Conv2d(ch, num_classes, kernel_size=1, bias=True))
if i < num_stacks-1:
fc_.append(nn.Conv2d(ch, ch, kernel_size=1, bias=True))
score_.append(nn.Conv2d(num_classes, ch, kernel_size=1, bias=True))
self.hg = nn.ModuleList(hg)
self.res = nn.ModuleList(res)
self.fc = nn.ModuleList(fc)
self.score = nn.ModuleList(score)
self.fc_ = nn.ModuleList(fc_)
self.score_ = nn.ModuleList(score_)
if self.add_partseg:
self.hg_ps = (Hourglass(block, num_blocks, self.num_feats, 4))
self.res_ps = (self._make_residual(block, self.num_feats, num_blocks))
self.fc_ps = (self._make_fc(ch, ch))
self.score_ps = (nn.Conv2d(ch, num_partseg, kernel_size=1, bias=True))
self.ups_upsampling_ps = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
if self.upsample_seg:
self.ups_upsampling = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
self.ups_conv0 = nn.Conv2d(3, 32, kernel_size=7, stride=1, padding=3,
bias=True)
self.ups_bn1 = nn.BatchNorm2d(32)
self.ups_conv1 = nn.Conv2d(32, 16, kernel_size=7, stride=1, padding=3,
bias=True)
self.ups_bn2 = nn.BatchNorm2d(16+2)
self.ups_conv2 = nn.Conv2d(16+2, 16, kernel_size=5, stride=1, padding=2,
bias=True)
self.ups_bn3 = nn.BatchNorm2d(16)
self.ups_conv3 = nn.Conv2d(16, 2, kernel_size=5, stride=1, padding=2,
bias=True)
def _make_residual(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=True),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _make_fc(self, inplanes, outplanes):
bn = nn.BatchNorm2d(inplanes)
conv = nn.Conv2d(inplanes, outplanes, kernel_size=1, bias=True)
return nn.Sequential(
conv,
bn,
self.relu,
)
def forward(self, x_in):
out = []
out_seg = []
out_partseg = []
x = self.conv1(x_in)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.maxpool(x)
x = self.layer2(x)
x = self.layer3(x)
for i in range(self.num_stacks):
if i == self.num_stacks - 1:
if self.add_partseg:
y_ps = self.hg_ps(x)
y_ps = self.res_ps(y_ps)
y_ps = self.fc_ps(y_ps)
score_ps = self.score_ps(y_ps)
out_partseg.append(score_ps[:, :, :, :])
y = self.hg[i](x)
y = self.res[i](y)
y = self.fc[i](y)
score = self.score[i](y)
if self.upsample_seg:
out.append(score[:, :-2, :, :])
out_seg.append(score[:, -2:, :, :])
else:
out.append(score)
if i < self.num_stacks-1:
fc_ = self.fc_[i](y)
score_ = self.score_[i](score)
x = x + fc_ + score_
if self.upsample_seg:
# PLAN: add a residual to the upsampled version of the segmentation image
# upsample predicted segmentation
seg_score = score[:, -2:, :, :]
seg_score_256 = self.ups_upsampling(seg_score)
# prepare input image
ups_img = self.ups_conv0(x_in)
ups_img = self.ups_bn1(ups_img)
ups_img = self.relu(ups_img)
ups_img = self.ups_conv1(ups_img)
# import pdb; pdb.set_trace()
ups_conc = torch.cat((seg_score_256, ups_img), 1)
# ups_conc = self.ups_bn2(ups_conc)
ups_conc = self.relu(ups_conc)
ups_conc = self.ups_conv2(ups_conc)
ups_conc = self.ups_bn3(ups_conc)
ups_conc = self.relu(ups_conc)
correction = self.ups_conv3(ups_conc)
seg_final = seg_score_256 + correction
if self.add_partseg:
partseg_final = self.ups_upsampling_ps(score_ps)
out_dict = {'out_list_kp': out,
'out_list_seg': out,
'seg_final': seg_final,
'out_list_partseg': out_partseg,
'partseg_final': partseg_final
}
return out_dict
else:
out_dict = {'out_list_kp': out,
'out_list_seg': out,
'seg_final': seg_final
}
return out_dict
return out
def hg(**kwargs):
model = HourglassNet(Bottleneck, num_stacks=kwargs['num_stacks'], num_blocks=kwargs['num_blocks'],
num_classes=kwargs['num_classes'], upsample_seg=kwargs['upsample_seg'],
add_partseg=kwargs['add_partseg'], num_partseg=kwargs['num_partseg'])
return model
def _hg(arch, pretrained, progress, **kwargs):
model = hg(**kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
model.load_state_dict(state_dict)
return model
def hg1(pretrained=False, progress=True, num_blocks=1, num_classes=16, upsample_seg=False, add_partseg=False, num_partseg=None):
return _hg('hg1', pretrained, progress, num_stacks=1, num_blocks=num_blocks,
num_classes=num_classes, upsample_seg=upsample_seg,
add_partseg=add_partseg, num_partseg=num_partseg)
def hg2(pretrained=False, progress=True, num_blocks=1, num_classes=16, upsample_seg=False, add_partseg=False, num_partseg=None):
return _hg('hg2', pretrained, progress, num_stacks=2, num_blocks=num_blocks,
num_classes=num_classes, upsample_seg=upsample_seg,
add_partseg=add_partseg, num_partseg=num_partseg)
def hg4(pretrained=False, progress=True, num_blocks=1, num_classes=16, upsample_seg=False, add_partseg=False, num_partseg=None):
return _hg('hg4', pretrained, progress, num_stacks=4, num_blocks=num_blocks,
num_classes=num_classes, upsample_seg=upsample_seg,
add_partseg=add_partseg, num_partseg=num_partseg)
def hg8(pretrained=False, progress=True, num_blocks=1, num_classes=16, upsample_seg=False, add_partseg=False, num_partseg=None):
return _hg('hg8', pretrained, progress, num_stacks=8, num_blocks=num_blocks,
num_classes=num_classes, upsample_seg=upsample_seg,
add_partseg=add_partseg, num_partseg=num_partseg)
|