File size: 13,534 Bytes
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

# part of the code from 
#   https://github.com/benjiebob/SMALify/blob/master/smal_fitter/p3d_renderer.py

import torch
import torch.nn.functional as F
from scipy.io  import loadmat
import numpy as np
# import config

import pytorch3d
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
    PerspectiveCameras, look_at_view_transform, look_at_rotation, 
    RasterizationSettings, MeshRenderer, MeshRasterizer, BlendParams,
    PointLights, HardPhongShader, SoftSilhouetteShader, Materials, Textures, 
    DirectionalLights
)
from pytorch3d.renderer import TexturesVertex, SoftPhongShader
from pytorch3d.io import load_objs_as_meshes

MESH_COLOR_0 = [0, 172, 223]
MESH_COLOR_1 = [172, 223, 0]


'''
Explanation of the shift between projection results from opendr and pytorch3d:
    (0, 0, ?) will be projected to 127.5 (pytorch3d) instead of 128 (opendr)
    imagine you have an image of size 4:
    middle of the first pixel is 0
    middle of the last pixel is 3
    => middle of the imgae would be 1.5 and not 2!
    so in order to go from pytorch3d predictions to opendr we would calculate: p_odr = p_p3d * (128/127.5)
To reproject points (p3d) by hand according to this pytorch3d renderer we would do the following steps:
    1.) build camera matrix
        K = np.array([[flength, 0, c_x],
                    [0, flength, c_y],
                    [0, 0, 1]], np.float)
    2.) we don't need to add extrinsics, as the mesh comes with translation (which is 
        added within smal_pytorch). all 3d points are already in the camera coordinate system.
        -> projection reduces to p2d_proj = K*p3d
    3.) convert to pytorch3d conventions (0 in the middle of the first pixel)
        p2d_proj_pytorch3d = p2d_proj / image_size * (image_size-1.)
renderer.py - project_points_p3d: shows an example of what is described above, but 
    same focal length for the whole batch

'''

class SilhRenderer(torch.nn.Module):
    def __init__(self, image_size, adapt_R_wldo=False):
        super(SilhRenderer, self).__init__()
        # see: https://pytorch3d.org/files/fit_textured_mesh.py, line 315
        # adapt_R=True is True for all my experiments
        # image_size: one number, integer
        # -----
        # set mesh color
        self.register_buffer('mesh_color_0', torch.FloatTensor(MESH_COLOR_0))
        self.register_buffer('mesh_color_1', torch.FloatTensor(MESH_COLOR_1))
        # prepare extrinsics, which in our case don't change
        R = torch.Tensor(np.eye(3)).float()[None, :, :]
        T = torch.Tensor(np.zeros((1, 3))).float()
        if adapt_R_wldo:
            R[0, 0, 0] = -1
        else:       # used for all my own experiments
            R[0, 0, 0] = -1
            R[0, 1, 1] = -1            
        self.register_buffer('R', R)
        self.register_buffer('T', T)
        # prepare that part of the intrinsics which does not change either
        # principal_point_prep = torch.Tensor([self.image_size / 2., self.image_size / 2.]).float()[None, :].float().to(device) 
        # image_size_prep = torch.Tensor([self.image_size, self.image_size]).float()[None, :].float().to(device) 
        self.img_size_scalar = image_size
        self.register_buffer('image_size', torch.Tensor([image_size, image_size]).float()[None, :].float())
        self.register_buffer('principal_point', torch.Tensor([image_size / 2., image_size / 2.]).float()[None, :].float())
        # Rasterization settings for differentiable rendering, where the blur_radius
        # initialization is based on Liu et al, 'Soft Rasterizer: A Differentiable 
        # Renderer for Image-based 3D Reasoning', ICCV 2019
        self.blend_params = BlendParams(sigma=1e-4, gamma=1e-4)
        self.raster_settings_soft = RasterizationSettings(
            image_size=image_size,      # 128
            blur_radius=np.log(1. / 1e-4 - 1.)*self.blend_params.sigma,  
            faces_per_pixel=100)     #50, 
        # Renderer for Image-based 3D Reasoning', body part segmentation
        self.blend_params_parts = BlendParams(sigma=2*1e-4, gamma=1e-4)
        self.raster_settings_soft_parts = RasterizationSettings(
            image_size=image_size,      # 128
            blur_radius=np.log(1. / 1e-4 - 1.)*self.blend_params_parts.sigma,  
            faces_per_pixel=60)     #50, 
        # settings for visualization renderer
        self.raster_settings_vis = RasterizationSettings(
                image_size=image_size, 
                blur_radius=0.0, 
                faces_per_pixel=1)

    def _get_cam(self, focal_lengths):
        device = focal_lengths.device
        bs = focal_lengths.shape[0]
        if pytorch3d.__version__ == '0.2.5':
            cameras = PerspectiveCameras(device=device,
                focal_length=focal_lengths.repeat((1, 2)), 
                principal_point=self.principal_point.repeat((bs, 1)), 
                R=self.R.repeat((bs, 1, 1)), T=self.T.repeat((bs, 1)), 
                image_size=self.image_size.repeat((bs, 1)))
        elif pytorch3d.__version__ == '0.6.1':
            cameras = PerspectiveCameras(device=device, in_ndc=False,
            focal_length=focal_lengths.repeat((1, 2)), 
            principal_point=self.principal_point.repeat((bs, 1)), 
            R=self.R.repeat((bs, 1, 1)), T=self.T.repeat((bs, 1)), 
            image_size=self.image_size.repeat((bs, 1)))
        else: 
            print('this part depends on the version of pytorch3d, code was developed with 0.2.5')
            raise ValueError
        return cameras

    def _get_visualization_from_mesh(self, mesh, cameras, lights=None):
        # color renderer for visualization
        with torch.no_grad():
            device = mesh.device
            # renderer for visualization
            if lights is None:
                lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]])
            vis_renderer = MeshRenderer(
                rasterizer=MeshRasterizer(
                    cameras=cameras, 
                    raster_settings=self.raster_settings_vis),
                shader=HardPhongShader(
                    device=device, 
                    cameras=cameras,
                    lights=lights))
            # render image:
            visualization = vis_renderer(mesh).permute(0, 3, 1, 2)[:, :3, :, :]
        return visualization


    def calculate_vertex_visibility(self, vertices, faces, focal_lengths, soft=False):
        tex = torch.ones_like(vertices) * self.mesh_color_0    # (1, V, 3)
        textures = Textures(verts_rgb=tex)
        mesh = Meshes(verts=vertices, faces=faces, textures=textures)
        cameras = self._get_cam(focal_lengths)
        # NEW: use the rasterizer to check vertex visibility
        #   see: https://github.com/facebookresearch/pytorch3d/issues/126
        # Get a rasterizer
        if soft:
            rasterizer = MeshRasterizer(cameras=cameras, 
                                        raster_settings=self.raster_settings_soft)
        else:
            rasterizer = MeshRasterizer(cameras=cameras, 
                            raster_settings=self.raster_settings_vis)
        # Get the output from rasterization
        fragments = rasterizer(mesh)
        # pix_to_face is of shape (N, H, W, 1)
        pix_to_face = fragments.pix_to_face  
        # (F, 3) where F is the total number of faces across all the meshes in the batch
        packed_faces = mesh.faces_packed() 
        # (V, 3) where V is the total number of verts across all the meshes in the batch
        packed_verts = mesh.verts_packed() 
        vertex_visibility_map = torch.zeros(packed_verts.shape[0])   # (V,)
        # Indices of unique visible faces
        visible_faces = pix_to_face.unique()    # [0]   # (num_visible_faces )
        # Get Indices of unique visible verts using the vertex indices in the faces
        visible_verts_idx = packed_faces[visible_faces]    # (num_visible_faces,  3)
        unique_visible_verts_idx = torch.unique(visible_verts_idx)   # (num_visible_verts, )
        # Update visibility indicator to 1 for all visible vertices 
        vertex_visibility_map[unique_visible_verts_idx] = 1.0
        # since all meshes have the same amount of vertices, we can reshape the result 
        bs = vertices.shape[0]
        vertex_visibility_map_resh = vertex_visibility_map.reshape((bs, -1))
        return pix_to_face, vertex_visibility_map_resh


    def get_torch_meshes(self, vertices, faces, color=0):
        # create pytorch mesh
        if color == 0:
            mesh_color = self.mesh_color_0
        else:
            mesh_color = self.mesh_color_1
        tex = torch.ones_like(vertices) * mesh_color    # (1, V, 3)
        textures = Textures(verts_rgb=tex)
        mesh = Meshes(verts=vertices, faces=faces, textures=textures)  
        return mesh


    def get_visualization_nograd(self, vertices, faces, focal_lengths, color=0):
        # vertices: torch.Size([bs, 3889, 3])
        # faces: torch.Size([bs, 7774, 3]), int
        # focal_lengths: torch.Size([bs, 1])
        device = vertices.device
        # create cameras
        cameras = self._get_cam(focal_lengths)
        # create pytorch mesh
        if color == 0:
            mesh_color = self.mesh_color_0      # blue
        elif color == 1:
            mesh_color = self.mesh_color_1      
        elif color ==  2:   
            MESH_COLOR_2 = [240, 250, 240]      # white
            mesh_color =  torch.FloatTensor(MESH_COLOR_2).to(device)
        elif color ==  3:   
            # MESH_COLOR_3 = [223, 0, 172]         # pink
            # MESH_COLOR_3 = [245, 245, 220]         # beige
            MESH_COLOR_3 = [166, 173, 164] 
            mesh_color =  torch.FloatTensor(MESH_COLOR_3).to(device)        
        else:
            MESH_COLOR_2 = [240, 250, 240]
            mesh_color =  torch.FloatTensor(MESH_COLOR_2).to(device)
        tex = torch.ones_like(vertices) * mesh_color    # (1, V, 3)
        textures = Textures(verts_rgb=tex)
        mesh = Meshes(verts=vertices, faces=faces, textures=textures)  
        # render mesh (no gradients)
        # lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]])
        # lights = PointLights(device=device, location=[[2.0, 2.0, -2.0]])
        lights = DirectionalLights(device=device, direction=[[0.0, -5.0, -10.0]])
        visualization = self._get_visualization_from_mesh(mesh, cameras, lights=lights)
        return visualization
              
    def project_points(self, points, focal_lengths=None, cameras=None):
        # points: torch.Size([bs, n_points, 3])
        # either focal_lengths or cameras is needed:
        #   focal_lenghts: torch.Size([bs, 1])
        #   cameras: pytorch camera, for example PerspectiveCameras()
        bs = points.shape[0]
        device = points.device
        screen_size = self.image_size.repeat((bs, 1))
        if cameras is None:
            cameras = self._get_cam(focal_lengths)
        if pytorch3d.__version__ == '0.2.5':
            proj_points_orig = cameras.transform_points_screen(points, screen_size)[:, :, [1, 0]]       # used in the original virtuel environment (for cvpr BARC submission) 
        elif pytorch3d.__version__ == '0.6.1':
            proj_points_orig = cameras.transform_points_screen(points)[:, :, [1, 0]]        
        else: 
            print('this part depends on the version of pytorch3d, code was developed with 0.2.5')
            raise ValueError
        # flip, otherwise the 1st and 2nd row are exchanged compared to the ground truth
        proj_points = torch.flip(proj_points_orig, [2])   
        # --- project points 'manually'
        # j_proj = project_points_p3d(image_size, focal_length, points, device)
        return proj_points      

    def forward(self, vertices, points, faces, focal_lengths, color=None):
        # vertices: torch.Size([bs, 3889, 3])
        # points: torch.Size([bs, n_points, 3]) (or None)
        # faces: torch.Size([bs, 7774, 3]), int
        # focal_lengths: torch.Size([bs, 1])
        # color: if None we don't render a visualization, else it should
        #   either be 0 or 1
        # ---> important: results are around 0.5 pixels off compared to chumpy!
        #   have a look at renderer.py for an explanation
        # create cameras
        cameras = self._get_cam(focal_lengths)
        # create pytorch mesh
        if color is None or color == 0:
            mesh_color = self.mesh_color_0
        else:
            mesh_color = self.mesh_color_1           
        tex = torch.ones_like(vertices) * mesh_color    # (1, V, 3)
        textures = Textures(verts_rgb=tex)
        mesh = Meshes(verts=vertices, faces=faces, textures=textures)
        # silhouette renderer 
        renderer_silh = MeshRenderer(
            rasterizer=MeshRasterizer(
                cameras=cameras, 
                raster_settings=self.raster_settings_soft),
            shader=SoftSilhouetteShader(blend_params=self.blend_params))
        # project silhouette
        silh_images = renderer_silh(mesh)[..., -1].unsqueeze(1)
        # project points
        if points is None:
            proj_points = None
        else:
            proj_points = self.project_points(points=points, cameras=cameras)
        if color is not None:
            # color renderer for visualization (no gradients)
            visualization = self._get_visualization_from_mesh(mesh, cameras)    
            return silh_images, proj_points, visualization
        else:
            return silh_images, proj_points