File size: 28,243 Bytes
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

import torch
import torch.nn as nn
import torch.backends.cudnn
import torch.nn.parallel
from tqdm import tqdm
import os
import pathlib
from matplotlib import pyplot as plt
import cv2
import numpy as np
import torch
import trimesh

import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from stacked_hourglass.utils.evaluation import accuracy, AverageMeter, final_preds, get_preds, get_preds_soft
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_input_image
from metrics.metrics import Metrics
from configs.SMAL_configs import EVAL_KEYPOINTS, KEYPOINT_GROUPS


# ---------------------------------------------------------------------------------------------------------------------------
def do_training_epoch(train_loader, model, loss_module, device, data_info, optimiser, quiet=False, acc_joints=None, weight_dict=None):
    losses = AverageMeter()
    losses_keyp = AverageMeter()
    losses_silh = AverageMeter()
    losses_shape = AverageMeter()
    losses_pose = AverageMeter()
    losses_class = AverageMeter()
    losses_breed = AverageMeter()
    losses_partseg = AverageMeter()
    accuracies = AverageMeter()
    # Put the model in training mode.
    model.train()
    # prepare progress bar
    iterable = enumerate(train_loader)
    progress = None
    if not quiet:
        progress = tqdm(iterable, desc='Train', total=len(train_loader), ascii=True, leave=False)
        iterable = progress
    # information for normalization 
    norm_dict = {
        'pose_rot6d_mean': torch.from_numpy(data_info.pose_rot6d_mean).float().to(device),
        'trans_mean': torch.from_numpy(data_info.trans_mean).float().to(device),
        'trans_std': torch.from_numpy(data_info.trans_std).float().to(device),
        'flength_mean': torch.from_numpy(data_info.flength_mean).float().to(device),
        'flength_std': torch.from_numpy(data_info.flength_std).float().to(device)}
    # prepare variables, put them on the right device
    for i, (input, target_dict) in iterable:
        batch_size = input.shape[0]
        for key in target_dict.keys(): 
            if key == 'breed_index':
                target_dict[key] = target_dict[key].long().to(device)
            elif key in ['index', 'pts', 'tpts', 'target_weight', 'silh', 'silh_distmat_tofg', 'silh_distmat_tobg', 'sim_breed_index', 'img_border_mask']:
                target_dict[key] = target_dict[key].float().to(device)
            elif key == 'has_seg':
                target_dict[key] = target_dict[key].to(device)
            else:
                pass
        input = input.float().to(device)

        # ----------------------- do training step -----------------------
        assert model.training, 'model must be in training mode.'
        with torch.enable_grad():
            # ----- forward pass -----  
            output, output_unnorm, output_reproj = model(input, norm_dict=norm_dict)        
            # ----- loss -----
            loss, loss_dict = loss_module(output_reproj=output_reproj, 
                target_dict=target_dict, 
                weight_dict=weight_dict)
            # ----- backward pass and parameter update -----
            optimiser.zero_grad()
            loss.backward()
            optimiser.step()
        # ----------------------------------------------------------------

        # prepare losses for progress bar
        bs_fake = 1     # batch_size
        losses.update(loss_dict['loss'], bs_fake)
        losses_keyp.update(loss_dict['loss_keyp_weighted'], bs_fake)
        losses_silh.update(loss_dict['loss_silh_weighted'], bs_fake)
        losses_shape.update(loss_dict['loss_shape_weighted'], bs_fake)
        losses_pose.update(loss_dict['loss_poseprior_weighted'], bs_fake)   
        losses_class.update(loss_dict['loss_class_weighted'], bs_fake)
        losses_breed.update(loss_dict['loss_breed_weighted'], bs_fake)
        losses_partseg.update(loss_dict['loss_partseg_weighted'], bs_fake)
        acc = - loss_dict['loss_keyp_weighted']     # this will be used to keep track of the 'best model'
        accuracies.update(acc, bs_fake)
        # Show losses as part of the progress bar.
        if progress is not None:
            my_string = 'Loss: {loss:0.4f}, loss_keyp: {loss_keyp:0.4f}, loss_silh: {loss_silh:0.4f}, loss_partseg: {loss_partseg:0.4f}, loss_shape: {loss_shape:0.4f}, loss_pose: {loss_pose:0.4f}, loss_class: {loss_class:0.4f}, loss_breed: {loss_breed:0.4f}'.format(
                loss=losses.avg,
                loss_keyp=losses_keyp.avg,
                loss_silh=losses_silh.avg,
                loss_shape=losses_shape.avg,
                loss_pose=losses_pose.avg,
                loss_class=losses_class.avg,
                loss_breed=losses_breed.avg,
                loss_partseg=losses_partseg.avg
            )
            progress.set_postfix_str(my_string)

    return my_string, accuracies.avg       


# ---------------------------------------------------------------------------------------------------------------------------
def do_validation_epoch(val_loader, model, loss_module, device, data_info, flip=False, quiet=False, acc_joints=None, save_imgs_path=None, weight_dict=None, metrics=None, val_opt='default', test_name_list=None, render_all=False, pck_thresh=0.15, len_dataset=None):
    losses = AverageMeter()
    losses_keyp = AverageMeter()
    losses_silh = AverageMeter()
    losses_shape = AverageMeter()
    losses_pose = AverageMeter()
    losses_class = AverageMeter()
    losses_breed = AverageMeter()
    losses_partseg = AverageMeter()
    accuracies = AverageMeter()
    if save_imgs_path is not None:
        pathlib.Path(save_imgs_path).mkdir(parents=True, exist_ok=True) 
    # Put the model in evaluation mode.
    model.eval()
    # prepare progress bar
    iterable = enumerate(val_loader)
    progress = None
    if not quiet:
        progress = tqdm(iterable, desc='Valid', total=len(val_loader), ascii=True, leave=False)
        iterable = progress
    # summarize information for normalization 
    norm_dict = {
        'pose_rot6d_mean': torch.from_numpy(data_info.pose_rot6d_mean).float().to(device),
        'trans_mean': torch.from_numpy(data_info.trans_mean).float().to(device),
        'trans_std': torch.from_numpy(data_info.trans_std).float().to(device),
        'flength_mean': torch.from_numpy(data_info.flength_mean).float().to(device),
        'flength_std': torch.from_numpy(data_info.flength_std).float().to(device)}
    batch_size = val_loader.batch_size
    # prepare variables, put them on the right device
    my_step = 0
    for i, (input, target_dict) in iterable:
        curr_batch_size = input.shape[0]
        for key in target_dict.keys(): 
            if key == 'breed_index':
                target_dict[key] = target_dict[key].long().to(device)
            elif key in ['index', 'pts', 'tpts', 'target_weight', 'silh', 'silh_distmat_tofg', 'silh_distmat_tobg', 'sim_breed_index', 'img_border_mask']:
                target_dict[key] = target_dict[key].float().to(device)
            elif key == 'has_seg':
                target_dict[key] = target_dict[key].to(device)
            else:
                pass
        input = input.float().to(device)

        # ----------------------- do validation step -----------------------
        with torch.no_grad():
            # ----- forward pass -----  
            # output: (['pose', 'flength', 'trans', 'keypoints_norm', 'keypoints_scores'])
            # output_unnorm: (['pose_rotmat', 'flength', 'trans', 'keypoints'])
            # output_reproj: (['vertices_smal', 'torch_meshes', 'keyp_3d', 'keyp_2d', 'silh', 'betas', 'pose_rot6d', 'dog_breed', 'shapedirs', 'z', 'flength_unnorm', 'flength'])
            # target_dict: (['index', 'center', 'scale', 'pts', 'tpts', 'target_weight', 'breed_index', 'sim_breed_index', 'ind_dataset', 'silh'])
            output, output_unnorm, output_reproj = model(input, norm_dict=norm_dict)        
            # ----- loss -----
            if metrics == 'no_loss':
                loss, loss_dict = loss_module(output_reproj=output_reproj, 
                    target_dict=target_dict, 
                    weight_dict=weight_dict)
        # ----------------------------------------------------------------

        if i == 0:
            if len_dataset is None:
                len_data = val_loader.batch_size * len(val_loader)  # 1703
            else:
                len_data = len_dataset
            if metrics == 'all' or metrics == 'no_loss':
                pck = np.zeros((len_data))
                pck_by_part = {group:np.zeros((len_data)) for group in KEYPOINT_GROUPS}
                acc_sil_2d = np.zeros(len_data)

                all_betas = np.zeros((len_data, output_reproj['betas'].shape[1]))
                all_betas_limbs = np.zeros((len_data, output_reproj['betas_limbs'].shape[1]))
                all_z = np.zeros((len_data, output_reproj['z'].shape[1]))
                all_pose_rotmat = np.zeros((len_data, output_unnorm['pose_rotmat'].shape[1], 3, 3))
                all_flength = np.zeros((len_data, output_unnorm['flength'].shape[1]))
                all_trans = np.zeros((len_data, output_unnorm['trans'].shape[1]))
                all_breed_indices = np.zeros((len_data))
                all_image_names = []        # len_data * [None]

        index = i  
        ind_img = 0
        if save_imgs_path is not None:
            # render predicted 3d models
            visualizations = model.render_vis_nograd(vertices=output_reproj['vertices_smal'],
                                                    focal_lengths=output_unnorm['flength'],
                                                    color=0)        # color=2)
            for ind_img in range(len(target_dict['index'])):    
                try: 
                    if test_name_list is not None:
                        img_name = test_name_list[int(target_dict['index'][ind_img].cpu().detach().numpy())].replace('/', '_')
                        img_name = img_name.split('.')[0]
                    else:
                        img_name = str(index) + '_' + str(ind_img)
                    # save image with predicted keypoints
                    out_path = save_imgs_path + '/keypoints_pred_' + img_name + '.png'
                    pred_unp = (output['keypoints_norm'][ind_img, :, :] + 1.) / 2 * (data_info.image_size - 1)
                    pred_unp_maxval = output['keypoints_scores'][ind_img, :, :]
                    pred_unp_prep = torch.cat((pred_unp, pred_unp_maxval), 1)
                    inp_img = input[ind_img, :, :, :].detach().clone()
                    save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_path, threshold=0.1, print_scores=True, ratio_in_out=1.0)    # threshold=0.3
                    # save predicted 3d model (front view)
                    pred_tex = visualizations[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
                    pred_tex_max = np.max(pred_tex, axis=2)
                    out_path = save_imgs_path + '/tex_pred_' + img_name + '.png'
                    plt.imsave(out_path, pred_tex)
                    input_image = input[ind_img, :, :, :].detach().clone()
                    for t, m, s in zip(input_image, data_info.rgb_mean, data_info.rgb_stddev): t.add_(m)
                    input_image_np = input_image.detach().cpu().numpy().transpose(1, 2, 0) 
                    im_masked = cv2.addWeighted(input_image_np,0.2,pred_tex,0.8,0)
                    im_masked[pred_tex_max<0.01, :] = input_image_np[pred_tex_max<0.01, :]
                    out_path = save_imgs_path + '/comp_pred_' + img_name + '.png'
                    plt.imsave(out_path, im_masked)
                    # save predicted 3d model (side view)
                    vertices_cent = output_reproj['vertices_smal'] - output_reproj['vertices_smal'].mean(dim=1)[:, None, :]
                    roll = np.pi / 2 * torch.ones(1).float().to(device)
                    pitch = np.pi / 2 * torch.ones(1).float().to(device)
                    tensor_0 = torch.zeros(1).float().to(device)
                    tensor_1 = torch.ones(1).float().to(device)
                    RX = torch.stack([torch.stack([tensor_1, tensor_0, tensor_0]), torch.stack([tensor_0, torch.cos(roll), -torch.sin(roll)]),torch.stack([tensor_0, torch.sin(roll), torch.cos(roll)])]).reshape(3,3)
                    RY = torch.stack([
                        torch.stack([torch.cos(pitch), tensor_0, torch.sin(pitch)]),
                        torch.stack([tensor_0, tensor_1, tensor_0]),
                        torch.stack([-torch.sin(pitch), tensor_0, torch.cos(pitch)])]).reshape(3,3)
                    vertices_rot = (torch.matmul(RY, vertices_cent.reshape((-1, 3))[:, :, None])).reshape((curr_batch_size, -1, 3))
                    vertices_rot[:, :, 2] = vertices_rot[:, :, 2] + torch.ones_like(vertices_rot[:, :, 2]) * 20     # 18     # *16

                    visualizations_rot = model.render_vis_nograd(vertices=vertices_rot,
                                                            focal_lengths=output_unnorm['flength'],
                                                            color=0)        # 2)
                    pred_tex = visualizations_rot[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
                    pred_tex_max = np.max(pred_tex, axis=2)
                    out_path = save_imgs_path + '/rot_tex_pred_' + img_name + '.png'
                    plt.imsave(out_path, pred_tex)
                    if render_all:
                        # save input image
                        inp_img = input[ind_img, :, :, :].detach().clone()
                        out_path = save_imgs_path + '/image_' + img_name + '.png'
                        save_input_image(inp_img, out_path)
                        # save mesh
                        V_posed = output_reproj['vertices_smal'][ind_img, :, :].detach().cpu().numpy()
                        Faces = model.smal.f
                        mesh_posed = trimesh.Trimesh(vertices=V_posed, faces=Faces, process=False)
                        mesh_posed.export(save_imgs_path + '/mesh_posed_' + img_name + '.obj')
                except: 
                    print('dont save an image')

        if metrics == 'all' or metrics == 'no_loss':
            # prepare a dictionary with all the predicted results
            preds = {}
            preds['betas'] = output_reproj['betas'].cpu().detach().numpy()
            preds['betas_limbs'] = output_reproj['betas_limbs'].cpu().detach().numpy()
            preds['z'] = output_reproj['z'].cpu().detach().numpy()
            preds['pose_rotmat'] = output_unnorm['pose_rotmat'].cpu().detach().numpy()
            preds['flength'] = output_unnorm['flength'].cpu().detach().numpy()
            preds['trans'] = output_unnorm['trans'].cpu().detach().numpy()
            preds['breed_index'] = target_dict['breed_index'].cpu().detach().numpy().reshape((-1))
            img_names = []
            for ind_img2 in range(0, output_reproj['betas'].shape[0]):
                if test_name_list is not None:
                    img_name2 = test_name_list[int(target_dict['index'][ind_img2].cpu().detach().numpy())].replace('/', '_')
                    img_name2 = img_name2.split('.')[0]
                else:
                    img_name2 = str(index) + '_' + str(ind_img2)
                img_names.append(img_name2)
            preds['image_names'] = img_names
            # prepare keypoints for PCK calculation - predicted as well as ground truth
            pred_keypoints_norm = output['keypoints_norm']   # -1 to 1
            pred_keypoints_256 = output_reproj['keyp_2d']
            pred_keypoints = pred_keypoints_256
            gt_keypoints_256 = target_dict['tpts'][:, :, :2] / 64. * (256. - 1)
            gt_keypoints_norm = gt_keypoints_256 / 256 / 0.5 - 1
            gt_keypoints = torch.cat((gt_keypoints_256, target_dict['tpts'][:, :, 2:3]), dim=2)     # gt_keypoints_norm
            # prepare silhouette for IoU calculation - predicted as well as ground truth
            has_seg = target_dict['has_seg']
            img_border_mask = target_dict['img_border_mask'][:, 0, :, :]
            gtseg = target_dict['silh']
            synth_silhouettes = output_reproj['silh'][:, 0, :, :]       # output_reproj['silh']
            synth_silhouettes[synth_silhouettes>0.5] = 1
            synth_silhouettes[synth_silhouettes<0.5] = 0
            # calculate PCK as well as IoU (similar to WLDO)
            preds['acc_PCK'] = Metrics.PCK(
                pred_keypoints, gt_keypoints, 
                gtseg, has_seg, idxs=EVAL_KEYPOINTS,
                thresh_range=[pck_thresh],       # [0.15],
            )
            preds['acc_IOU'] = Metrics.IOU(
                synth_silhouettes, gtseg, 
                img_border_mask, mask=has_seg
            )
            for group, group_kps in KEYPOINT_GROUPS.items():
                preds[f'{group}_PCK'] = Metrics.PCK(
                    pred_keypoints, gt_keypoints, gtseg, has_seg, 
                    thresh_range=[pck_thresh],       # [0.15],
                    idxs=group_kps
                )
            # add results for all images in this batch to lists
            curr_batch_size = pred_keypoints_256.shape[0]
            if not (preds['acc_PCK'].data.cpu().numpy().shape == (pck[my_step * batch_size:my_step * batch_size + curr_batch_size]).shape):
                import pdb; pdb.set_trace()
            pck[my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_PCK'].data.cpu().numpy()
            acc_sil_2d[my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_IOU'].data.cpu().numpy()
            for part in pck_by_part:
                pck_by_part[part][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds[f'{part}_PCK'].data.cpu().numpy()
            all_betas[my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['betas'] 
            all_betas_limbs[my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['betas_limbs'] 
            all_z[my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['z'] 
            all_pose_rotmat[my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['pose_rotmat'] 
            all_flength[my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['flength'] 
            all_trans[my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['trans'] 
            all_breed_indices[my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['breed_index']
            all_image_names.extend(preds['image_names'])
            # update progress bar
            if progress is not None:
                my_string = "PCK: {0:.2f}, IOU: {1:.2f}".format(
                    pck[:(my_step * batch_size + curr_batch_size)].mean(),
                    acc_sil_2d[:(my_step * batch_size + curr_batch_size)].mean())
                progress.set_postfix_str(my_string)
        else:
            # measure accuracy and record loss
            bs_fake = 1     # batch_size
            losses.update(loss_dict['loss'], bs_fake)
            losses_keyp.update(loss_dict['loss_keyp_weighted'], bs_fake)
            losses_silh.update(loss_dict['loss_silh_weighted'], bs_fake)
            losses_shape.update(loss_dict['loss_shape_weighted'], bs_fake)
            losses_pose.update(loss_dict['loss_poseprior_weighted'], bs_fake)  
            losses_class.update(loss_dict['loss_class_weighted'], bs_fake)
            losses_breed.update(loss_dict['loss_breed_weighted'], bs_fake)
            losses_partseg.update(loss_dict['loss_partseg_weighted'], bs_fake)
            acc = - loss_dict['loss_keyp_weighted']     # this will be used to keep track of the 'best model'
            accuracies.update(acc, bs_fake)
            # Show losses as part of the progress bar.
            if progress is not None:
                my_string = 'Loss: {loss:0.4f}, loss_keyp: {loss_keyp:0.4f}, loss_silh: {loss_silh:0.4f}, loss_partseg: {loss_partseg:0.4f}, loss_shape: {loss_shape:0.4f}, loss_pose: {loss_pose:0.4f}, loss_class: {loss_class:0.4f}, loss_breed: {loss_breed:0.4f}'.format(
                    loss=losses.avg,
                    loss_keyp=losses_keyp.avg,
                    loss_silh=losses_silh.avg,
                    loss_shape=losses_shape.avg,
                    loss_pose=losses_pose.avg,
                    loss_class=losses_class.avg,
                    loss_breed=losses_breed.avg,
                    loss_partseg=losses_partseg.avg
                )
                progress.set_postfix_str(my_string)
        my_step += 1
    if metrics == 'all':
        summary = {'pck': pck, 'acc_sil_2d': acc_sil_2d, 'pck_by_part':pck_by_part,
                    'betas': all_betas, 'betas_limbs': all_betas_limbs, 'z': all_z, 'pose_rotmat': all_pose_rotmat,
                    'flenght': all_flength, 'trans': all_trans, 'image_names': all_image_names, 'breed_indices': all_breed_indices}
        return my_string, summary    
    elif metrics == 'no_loss':
        return my_string, np.average(np.asarray(acc_sil_2d))
    else:
        return my_string, accuracies.avg       


# ---------------------------------------------------------------------------------------------------------------------------
def do_visual_epoch(val_loader, model, device, data_info, flip=False, quiet=False, acc_joints=None, save_imgs_path=None, weight_dict=None, metrics=None, val_opt='default', test_name_list=None, render_all=False, pck_thresh=0.15, return_results=False):
    if save_imgs_path is not None:
        pathlib.Path(save_imgs_path).mkdir(parents=True, exist_ok=True) 
    all_results = []

    # Put the model in evaluation mode.
    model.eval()

    iterable = enumerate(val_loader)

    # information for normalization 
    norm_dict = {
        'pose_rot6d_mean': torch.from_numpy(data_info.pose_rot6d_mean).float().to(device),
        'trans_mean': torch.from_numpy(data_info.trans_mean).float().to(device),
        'trans_std': torch.from_numpy(data_info.trans_std).float().to(device),
        'flength_mean': torch.from_numpy(data_info.flength_mean).float().to(device),
        'flength_std': torch.from_numpy(data_info.flength_std).float().to(device)}

    for i, (input, target_dict) in iterable:
        batch_size = input.shape[0]
        input = input.float().to(device)
        partial_results = {}

        # ----------------------- do visualization step -----------------------
        with torch.no_grad():
            output, output_unnorm, output_reproj = model(input, norm_dict=norm_dict)        

        index = i  
        ind_img = 0
        for ind_img in range(batch_size): #  range(min(12, batch_size)):     # range(12):    # [0]:  #range(0, batch_size):

            try: 
                if test_name_list is not None:
                    img_name = test_name_list[int(target_dict['index'][ind_img].cpu().detach().numpy())].replace('/', '_')
                    img_name = img_name.split('.')[0]
                else:
                    img_name = str(index) + '_' + str(ind_img)
                partial_results['img_name'] = img_name
                visualizations = model.render_vis_nograd(vertices=output_reproj['vertices_smal'],
                                                        focal_lengths=output_unnorm['flength'],
                                                        color=0)    # 2)
                # save image with predicted keypoints
                pred_unp = (output['keypoints_norm'][ind_img, :, :] + 1.) / 2 * (data_info.image_size - 1)
                pred_unp_maxval = output['keypoints_scores'][ind_img, :, :]
                pred_unp_prep = torch.cat((pred_unp, pred_unp_maxval), 1)
                inp_img = input[ind_img, :, :, :].detach().clone()
                if save_imgs_path is not None:
                    out_path = save_imgs_path + '/keypoints_pred_' + img_name + '.png'
                    save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_path, threshold=0.1, print_scores=True, ratio_in_out=1.0)    # threshold=0.3
                # save predicted 3d model
                #   (1) front view
                pred_tex = visualizations[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
                pred_tex_max = np.max(pred_tex, axis=2)
                partial_results['tex_pred'] = pred_tex
                if save_imgs_path is not None:
                    out_path = save_imgs_path + '/tex_pred_' + img_name + '.png'
                    plt.imsave(out_path, pred_tex)
                input_image = input[ind_img, :, :, :].detach().clone()
                for t, m, s in zip(input_image, data_info.rgb_mean, data_info.rgb_stddev): t.add_(m)
                input_image_np = input_image.detach().cpu().numpy().transpose(1, 2, 0) 
                im_masked = cv2.addWeighted(input_image_np,0.2,pred_tex,0.8,0)
                im_masked[pred_tex_max<0.01, :] = input_image_np[pred_tex_max<0.01, :]
                partial_results['comp_pred'] = im_masked
                if save_imgs_path is not None:
                    out_path = save_imgs_path + '/comp_pred_' + img_name + '.png'
                    plt.imsave(out_path, im_masked)
                #   (2) side view
                vertices_cent = output_reproj['vertices_smal'] - output_reproj['vertices_smal'].mean(dim=1)[:, None, :]
                roll = np.pi / 2 * torch.ones(1).float().to(device)
                pitch = np.pi / 2 * torch.ones(1).float().to(device)
                tensor_0 = torch.zeros(1).float().to(device)
                tensor_1 = torch.ones(1).float().to(device)
                RX = torch.stack([torch.stack([tensor_1, tensor_0, tensor_0]), torch.stack([tensor_0, torch.cos(roll), -torch.sin(roll)]),torch.stack([tensor_0, torch.sin(roll), torch.cos(roll)])]).reshape(3,3)
                RY = torch.stack([
                    torch.stack([torch.cos(pitch), tensor_0, torch.sin(pitch)]),
                    torch.stack([tensor_0, tensor_1, tensor_0]),
                    torch.stack([-torch.sin(pitch), tensor_0, torch.cos(pitch)])]).reshape(3,3)
                vertices_rot = (torch.matmul(RY, vertices_cent.reshape((-1, 3))[:, :, None])).reshape((batch_size, -1, 3))
                vertices_rot[:, :, 2] = vertices_rot[:, :, 2] + torch.ones_like(vertices_rot[:, :, 2]) * 20     # 18     # *16
                visualizations_rot = model.render_vis_nograd(vertices=vertices_rot,
                                                        focal_lengths=output_unnorm['flength'],
                                                        color=0)    # 2)
                pred_tex = visualizations_rot[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
                pred_tex_max = np.max(pred_tex, axis=2)
                partial_results['rot_tex_pred'] = pred_tex
                if save_imgs_path is not None:
                    out_path = save_imgs_path + '/rot_tex_pred_' + img_name + '.png'
                    plt.imsave(out_path, pred_tex)
                render_all = True
                if render_all:
                    # save input image 
                    inp_img = input[ind_img, :, :, :].detach().clone()
                    if save_imgs_path is not None:
                        out_path = save_imgs_path + '/image_' + img_name + '.png'
                        save_input_image(inp_img, out_path)
                    # save posed mesh
                    V_posed = output_reproj['vertices_smal'][ind_img, :, :].detach().cpu().numpy()
                    Faces = model.smal.f
                    mesh_posed = trimesh.Trimesh(vertices=V_posed, faces=Faces, process=False)
                    partial_results['mesh_posed'] = mesh_posed
                    if save_imgs_path is not None:
                        mesh_posed.export(save_imgs_path + '/mesh_posed_' + img_name + '.obj')
            except:
                print('pass...')
            all_results.append(partial_results)
    if return_results:
        return all_results
    else:
        return