File size: 10,848 Bytes
7629b39
 
2a77bc9
 
 
1d49379
b225901
 
2a77bc9
1d49379
2a77bc9
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d61df
 
 
 
5cc008f
d6d61df
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d1abf
 
26a85d5
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a79da3
7629b39
 
 
3a79da3
 
 
 
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56bd45b
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bfc778
7629b39
 
 
 
3051026
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# python gradio_demo/barc_demo_v3.py

import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"  
os.environ["CUDA_VISIBLE_DEVICES"]="0"
try:
    # os.system("pip install --upgrade  torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html")
    os.system("pip install --upgrade  torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html")
except Exception as e:
    print(e)

import numpy as np
import os
import glob
import torch
from torch.utils.data import DataLoader
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import torchvision.transforms as T
import cv2
from matplotlib import pyplot as plt
from PIL import Image

import gradio as gr



import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../', 'src'))
from stacked_hourglass.datasets.imgcropslist import ImgCrops
from combined_model.train_main_image_to_3d_withbreedrel import do_visual_epoch
from combined_model.model_shape_v7 import ModelImageTo3d_withshape_withproj

from configs.barc_cfg_defaults import get_cfg_global_updated

print(
    "torch: ", torch.__version__,
    "\ntorchvision: ", torchvision.__version__,
)
# print("EnV", os.environ)



def get_prediction(model, img_path_or_img, confidence=0.5):
    """
    see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
    get_prediction
        parameters:
        - img_path - path of the input image
        - confidence - threshold value for prediction score
        method:
        - Image is obtained from the image path
        - the image is converted to image tensor using PyTorch's Transforms
        - image is passed through the model to get the predictions
        - class, box coordinates are obtained, but only prediction score > threshold
            are chosen.
        
    """
    if isinstance(img_path_or_img, str):
        img = Image.open(img_path_or_img).convert('RGB')
    else:
        img = img_path_or_img
    transform = T.Compose([T.ToTensor()])
    img = transform(img)
    pred = model([img])
    # pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())]
    pred_class = list(pred[0]['labels'].numpy())
    pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())]
    pred_score = list(pred[0]['scores'].detach().numpy())
    try:
        pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
        pred_boxes = pred_boxes[:pred_t+1]
        pred_class = pred_class[:pred_t+1]
        return pred_boxes, pred_class, pred_score
    except:
        print('no bounding box with a score that is high enough found! -> work on full image')
        return None, None, None

def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1):
    """
    see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
    object_detection_api
        parameters:
        - img_path_or_img - path of the input image
        - confidence - threshold value for prediction score
        - rect_th - thickness of bounding box
        - text_size - size of the class label text
        - text_th - thichness of the text
        method:
        - prediction is obtained from get_prediction method
        - for each prediction, bounding box is drawn and text is written 
            with opencv
        - the final image is displayed
    """
    boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence)
    if isinstance(img_path_or_img, str):
        img = cv2.imread(img_path_or_img)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    else:
        img = img_path_or_img
    is_first = True
    bbox = None
    if boxes is not None:
        for i in range(len(boxes)):
            cls = pred_cls[i]
            if cls == 18 and bbox is None:
                cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
                # cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
                cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
                bbox = boxes[i]
    return img, bbox



def run_bbox_inference(input_image):
    # load configs
    cfg = get_cfg_global_updated()

    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
    model.eval()
    out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png')
    img, bbox = detect_object(model=model, img_path_or_img=input_image, confidence=0.5)
    fig = plt.figure()   #  plt.figure(figsize=(20,30))
    plt.imsave(out_path, img)
    return img, bbox





def run_barc_inference(input_image, bbox=None):

    # load configs
    cfg = get_cfg_global_updated()

    model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, 'barc_complete', 'model_best.pth.tar')  



    # Select the hardware device to use for inference.
    '''if torch.cuda.is_available() and cfg.device=='cuda':
        device = torch.device('cuda', torch.cuda.current_device())
        # torch.backends.cudnn.benchmark = True
    else:
        device = torch.device('cpu')'''
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print('----------------------> device: ')
    print(device)

    path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, model_file_complete) 

    # Disable gradient calculations.
    torch.set_grad_enabled(False)

    # prepare complete model
    complete_model = ModelImageTo3d_withshape_withproj(
        num_stage_comb=cfg.params.NUM_STAGE_COMB, num_stage_heads=cfg.params.NUM_STAGE_HEADS, \
        num_stage_heads_pose=cfg.params.NUM_STAGE_HEADS_POSE, trans_sep=cfg.params.TRANS_SEP, \
        arch=cfg.params.ARCH, n_joints=cfg.params.N_JOINTS, n_classes=cfg.params.N_CLASSES, \
        n_keyp=cfg.params.N_KEYP, n_bones=cfg.params.N_BONES, n_betas=cfg.params.N_BETAS, n_betas_limbs=cfg.params.N_BETAS_LIMBS, \
        n_breeds=cfg.params.N_BREEDS, n_z=cfg.params.N_Z, image_size=cfg.params.IMG_SIZE, \
        silh_no_tail=cfg.params.SILH_NO_TAIL, thr_keyp_sc=cfg.params.KP_THRESHOLD, add_z_to_3d_input=cfg.params.ADD_Z_TO_3D_INPUT,
        n_segbps=cfg.params.N_SEGBPS, add_segbps_to_3d_input=cfg.params.ADD_SEGBPS_TO_3D_INPUT, add_partseg=cfg.params.ADD_PARTSEG, n_partseg=cfg.params.N_PARTSEG, \
        fix_flength=cfg.params.FIX_FLENGTH, structure_z_to_betas=cfg.params.STRUCTURE_Z_TO_B, structure_pose_net=cfg.params.STRUCTURE_POSE_NET,
        nf_version=cfg.params.NF_VERSION) 

    # load trained model
    print(path_model_file_complete)
    assert os.path.isfile(path_model_file_complete)
    print('Loading model weights from file: {}'.format(path_model_file_complete))
    checkpoint_complete = torch.load(path_model_file_complete, map_location=device)
    state_dict_complete = checkpoint_complete['state_dict']
    complete_model.load_state_dict(state_dict_complete, strict=False)        
    complete_model = complete_model.to(device)

    save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples')
    if not os.path.exists(save_imgs_path):
        os.makedirs(save_imgs_path)

    input_image_list = [input_image]
    if bbox is not None:
        input_bbox_list = [bbox]
    else:
        input_bbox_list = None
    val_dataset = ImgCrops(image_list=input_image_list, bbox_list=input_bbox_list, dataset_mode='complete')
    test_name_list = val_dataset.test_name_list
    val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False,
                            num_workers=0, pin_memory=True, drop_last=False)   

    # run visual evaluation
    #   remark: take ACC_Joints and DATA_INFO from StanExt as this is the training dataset
    all_results = do_visual_epoch(val_loader, complete_model, device,
                        ImgCrops.DATA_INFO,
                        weight_dict=None,
                        acc_joints=ImgCrops.ACC_JOINTS,
                        save_imgs_path=None, # save_imgs_path,
                        metrics='all', 
                        test_name_list=test_name_list,
                        render_all=cfg.params.RENDER_ALL,
                        pck_thresh=cfg.params.PCK_THRESH, 
                        return_results=True)

    mesh = all_results[0]['mesh_posed']
    result_path = os.path.join(save_imgs_path, test_name_list[0] + '_z')

    mesh.apply_transform([[-1, 0, 0, 0],
                            [0, -1, 0, 0],
                            [0, 0, 1, 1],
                            [0, 0, 0, 1]])
    mesh.export(file_obj=result_path + '.glb')
    result_gltf = result_path + '.glb'
    return [result_gltf, result_gltf]






def run_complete_inference(input_image):

    output_interm_image, output_interm_bbox = run_bbox_inference(input_image.copy())

    print(output_interm_bbox)

    # output_image = run_barc_inference(input_image)
    output_image = run_barc_inference(input_image, output_interm_bbox)

    return output_image




# demo = gr.Interface(run_barc_inference, gr.Image(), "image")
# demo = gr.Interface(run_complete_inference, gr.Image(), "image")



# see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py

description = '''
# BARC

#### Project Page
* https://barc.is.tue.mpg.de/

#### Description
This is a demo for BARC. While BARC is trained on image crops, this demo uses a pretrained Faster-RCNN in order to get bounding boxes for the dogs. 
To see your result you may have to wait a minute or two, please be paitient.

<details>

<summary>More</summary>

#### Citation

```
@inproceedings{BARC:2022,
    title = {BARC}: Learning to Regress {3D} Dog Shape from Images by Exploiting Breed Information,
    author = {Rueegg, Nadine and Zuffi, Silvia and Schindler, Konrad and Black, Michael J.},
    booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2022}
}
```

</details>
'''

examples = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png')))  


demo = gr.Interface(
    fn=run_complete_inference,
    description=description,
    # inputs=gr.Image(type="filepath", label="Input Image"),
    inputs=gr.Image(label="Input Image"),
    outputs=[
        gr.Model3D(
            clear_color=[0.0, 0.0, 0.0, 0.0],  label="3D Model"),
        gr.File(label="Download 3D Model")
    ],
    examples=examples,
    thumbnail="barc_thumbnail.png",
    allow_flagging="never",
    cache_examples=False        # True
)



demo.launch()       # (share=True)