Spaces:
Runtime error
Runtime error
File size: 10,848 Bytes
7629b39 2a77bc9 1d49379 b225901 2a77bc9 1d49379 2a77bc9 7629b39 d6d61df 5cc008f d6d61df 7629b39 a7d1abf 26a85d5 7629b39 3a79da3 7629b39 3a79da3 7629b39 56bd45b 7629b39 1bfc778 7629b39 3051026 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# python gradio_demo/barc_demo_v3.py
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
try:
# os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html")
os.system("pip install --upgrade torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html")
except Exception as e:
print(e)
import numpy as np
import os
import glob
import torch
from torch.utils.data import DataLoader
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import torchvision.transforms as T
import cv2
from matplotlib import pyplot as plt
from PIL import Image
import gradio as gr
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../', 'src'))
from stacked_hourglass.datasets.imgcropslist import ImgCrops
from combined_model.train_main_image_to_3d_withbreedrel import do_visual_epoch
from combined_model.model_shape_v7 import ModelImageTo3d_withshape_withproj
from configs.barc_cfg_defaults import get_cfg_global_updated
print(
"torch: ", torch.__version__,
"\ntorchvision: ", torchvision.__version__,
)
# print("EnV", os.environ)
def get_prediction(model, img_path_or_img, confidence=0.5):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
get_prediction
parameters:
- img_path - path of the input image
- confidence - threshold value for prediction score
method:
- Image is obtained from the image path
- the image is converted to image tensor using PyTorch's Transforms
- image is passed through the model to get the predictions
- class, box coordinates are obtained, but only prediction score > threshold
are chosen.
"""
if isinstance(img_path_or_img, str):
img = Image.open(img_path_or_img).convert('RGB')
else:
img = img_path_or_img
transform = T.Compose([T.ToTensor()])
img = transform(img)
pred = model([img])
# pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())]
pred_class = list(pred[0]['labels'].numpy())
pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())]
pred_score = list(pred[0]['scores'].detach().numpy())
try:
pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
pred_boxes = pred_boxes[:pred_t+1]
pred_class = pred_class[:pred_t+1]
return pred_boxes, pred_class, pred_score
except:
print('no bounding box with a score that is high enough found! -> work on full image')
return None, None, None
def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
object_detection_api
parameters:
- img_path_or_img - path of the input image
- confidence - threshold value for prediction score
- rect_th - thickness of bounding box
- text_size - size of the class label text
- text_th - thichness of the text
method:
- prediction is obtained from get_prediction method
- for each prediction, bounding box is drawn and text is written
with opencv
- the final image is displayed
"""
boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence)
if isinstance(img_path_or_img, str):
img = cv2.imread(img_path_or_img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = img_path_or_img
is_first = True
bbox = None
if boxes is not None:
for i in range(len(boxes)):
cls = pred_cls[i]
if cls == 18 and bbox is None:
cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
# cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
bbox = boxes[i]
return img, bbox
def run_bbox_inference(input_image):
# load configs
cfg = get_cfg_global_updated()
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()
out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png')
img, bbox = detect_object(model=model, img_path_or_img=input_image, confidence=0.5)
fig = plt.figure() # plt.figure(figsize=(20,30))
plt.imsave(out_path, img)
return img, bbox
def run_barc_inference(input_image, bbox=None):
# load configs
cfg = get_cfg_global_updated()
model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, 'barc_complete', 'model_best.pth.tar')
# Select the hardware device to use for inference.
'''if torch.cuda.is_available() and cfg.device=='cuda':
device = torch.device('cuda', torch.cuda.current_device())
# torch.backends.cudnn.benchmark = True
else:
device = torch.device('cpu')'''
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('----------------------> device: ')
print(device)
path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, model_file_complete)
# Disable gradient calculations.
torch.set_grad_enabled(False)
# prepare complete model
complete_model = ModelImageTo3d_withshape_withproj(
num_stage_comb=cfg.params.NUM_STAGE_COMB, num_stage_heads=cfg.params.NUM_STAGE_HEADS, \
num_stage_heads_pose=cfg.params.NUM_STAGE_HEADS_POSE, trans_sep=cfg.params.TRANS_SEP, \
arch=cfg.params.ARCH, n_joints=cfg.params.N_JOINTS, n_classes=cfg.params.N_CLASSES, \
n_keyp=cfg.params.N_KEYP, n_bones=cfg.params.N_BONES, n_betas=cfg.params.N_BETAS, n_betas_limbs=cfg.params.N_BETAS_LIMBS, \
n_breeds=cfg.params.N_BREEDS, n_z=cfg.params.N_Z, image_size=cfg.params.IMG_SIZE, \
silh_no_tail=cfg.params.SILH_NO_TAIL, thr_keyp_sc=cfg.params.KP_THRESHOLD, add_z_to_3d_input=cfg.params.ADD_Z_TO_3D_INPUT,
n_segbps=cfg.params.N_SEGBPS, add_segbps_to_3d_input=cfg.params.ADD_SEGBPS_TO_3D_INPUT, add_partseg=cfg.params.ADD_PARTSEG, n_partseg=cfg.params.N_PARTSEG, \
fix_flength=cfg.params.FIX_FLENGTH, structure_z_to_betas=cfg.params.STRUCTURE_Z_TO_B, structure_pose_net=cfg.params.STRUCTURE_POSE_NET,
nf_version=cfg.params.NF_VERSION)
# load trained model
print(path_model_file_complete)
assert os.path.isfile(path_model_file_complete)
print('Loading model weights from file: {}'.format(path_model_file_complete))
checkpoint_complete = torch.load(path_model_file_complete, map_location=device)
state_dict_complete = checkpoint_complete['state_dict']
complete_model.load_state_dict(state_dict_complete, strict=False)
complete_model = complete_model.to(device)
save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples')
if not os.path.exists(save_imgs_path):
os.makedirs(save_imgs_path)
input_image_list = [input_image]
if bbox is not None:
input_bbox_list = [bbox]
else:
input_bbox_list = None
val_dataset = ImgCrops(image_list=input_image_list, bbox_list=input_bbox_list, dataset_mode='complete')
test_name_list = val_dataset.test_name_list
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False)
# run visual evaluation
# remark: take ACC_Joints and DATA_INFO from StanExt as this is the training dataset
all_results = do_visual_epoch(val_loader, complete_model, device,
ImgCrops.DATA_INFO,
weight_dict=None,
acc_joints=ImgCrops.ACC_JOINTS,
save_imgs_path=None, # save_imgs_path,
metrics='all',
test_name_list=test_name_list,
render_all=cfg.params.RENDER_ALL,
pck_thresh=cfg.params.PCK_THRESH,
return_results=True)
mesh = all_results[0]['mesh_posed']
result_path = os.path.join(save_imgs_path, test_name_list[0] + '_z')
mesh.apply_transform([[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 1],
[0, 0, 0, 1]])
mesh.export(file_obj=result_path + '.glb')
result_gltf = result_path + '.glb'
return [result_gltf, result_gltf]
def run_complete_inference(input_image):
output_interm_image, output_interm_bbox = run_bbox_inference(input_image.copy())
print(output_interm_bbox)
# output_image = run_barc_inference(input_image)
output_image = run_barc_inference(input_image, output_interm_bbox)
return output_image
# demo = gr.Interface(run_barc_inference, gr.Image(), "image")
# demo = gr.Interface(run_complete_inference, gr.Image(), "image")
# see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py
description = '''
# BARC
#### Project Page
* https://barc.is.tue.mpg.de/
#### Description
This is a demo for BARC. While BARC is trained on image crops, this demo uses a pretrained Faster-RCNN in order to get bounding boxes for the dogs.
To see your result you may have to wait a minute or two, please be paitient.
<details>
<summary>More</summary>
#### Citation
```
@inproceedings{BARC:2022,
title = {BARC}: Learning to Regress {3D} Dog Shape from Images by Exploiting Breed Information,
author = {Rueegg, Nadine and Zuffi, Silvia and Schindler, Konrad and Black, Michael J.},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
year = {2022}
}
```
</details>
'''
examples = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png')))
demo = gr.Interface(
fn=run_complete_inference,
description=description,
# inputs=gr.Image(type="filepath", label="Input Image"),
inputs=gr.Image(label="Input Image"),
outputs=[
gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
gr.File(label="Download 3D Model")
],
examples=examples,
thumbnail="barc_thumbnail.png",
allow_flagging="never",
cache_examples=False # True
)
demo.launch() # (share=True) |