File size: 2,251 Bytes
dc86cbf
 
 
5fb9ab8
c873095
33cd6d1
 
 
 
 
 
 
 
c873095
d616fde
c873095
 
 
4da441b
4732c62
c873095
 
 
c916659
 
c873095
c916659
 
 
 
c873095
 
33cd6d1
c916659
c873095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c916659
c873095
 
 
 
 
 
 
a569e38
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
from gtts import gTTS
from io import BytesIO
from responser import responsr
# Function to convert text to speech and return audio file
def text_to_speech(text):
    tts = gTTS(text)
    audio_file = BytesIO()
    tts.write_to_fp(audio_file)
    audio_file.seek(0)
    return audio_file

def main():
    # Layout with three columns
    col1, col2 = st.columns([11, 1])
    
    with col1:
        # Title with custom CSS styling for top margin
        st.markdown('<div style="margin-top: -5px;" class="title-wrapper"><h1 style="text-align: center;">Your English Speaking Guide</h1></div>', unsafe_allow_html=True)
    
    # Initialize chat history if not already initialized
    if "chat_messages" not in st.session_state:
        st.session_state.chat_messages = []

    # Display chat history
    for message in st.session_state.chat_messages:
        if message["role"] == "user":
            st.text_area("User:", message["content"], height=40, key=message["content"], disabled=True)
        else:
            st.text_area("AI:", message["content"], height=40, key=message["content"], disabled=True)
            # Display audio in chat interface
            st.audio(message["audio"], format="audio/mp3")

    # User input
    if prompt := st.chat_input("Welcome - How can I help you?"):
        # Display user's message in chat message container
        with st.chat_message("user"):
            st.markdown(prompt)
        
        # Add user message to chat history
        st.session_state.chat_messages.append({"role": "user", "content": prompt})
        
        # Get AI response using responsr function
        response = responsr(prompt)
        
        # Convert AI response to speech
        audio_file = text_to_speech(response)
        
        # Display assistant's response in chat message container
        with st.chat_message("assistant"):
            st.markdown(response)
            st.audio(audio_file, format="audio/mp3")
        
        # Add assistant's response and audio to chat history
        st.session_state.chat_messages.append({
            "role": "assistant",
            "content": response,
            "audio": audio_file.getvalue()
        })

if __name__ == "__main__":
    main()