Spaces:
ruimei
/
Runtime error

File size: 5,609 Bytes
dfc1efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Loading pretrained models.
"""

import logging
from pathlib import Path
import typing as tp

#from dora.log import fatal

import logging

from diffq import DiffQuantizer
import torch.hub

from .model import Demucs
from .tasnet_v2 import ConvTasNet
from .utils import set_state

from .hdemucs import HDemucs
from .repo import RemoteRepo, LocalRepo, ModelOnlyRepo, BagOnlyRepo, AnyModelRepo, ModelLoadingError  # noqa

logger = logging.getLogger(__name__)
ROOT_URL = "https://dl.fbaipublicfiles.com/demucs/mdx_final/"
REMOTE_ROOT = Path(__file__).parent / 'remote'

SOURCES = ["drums", "bass", "other", "vocals"]


def demucs_unittest():
    model = HDemucs(channels=4, sources=SOURCES)
    return model


def add_model_flags(parser):
    group = parser.add_mutually_exclusive_group(required=False)
    group.add_argument("-s", "--sig", help="Locally trained XP signature.")
    group.add_argument("-n", "--name", default="mdx_extra_q",
                       help="Pretrained model name or signature. Default is mdx_extra_q.")
    parser.add_argument("--repo", type=Path,
                        help="Folder containing all pre-trained models for use with -n.")


def _parse_remote_files(remote_file_list) -> tp.Dict[str, str]:
    root: str = ''
    models: tp.Dict[str, str] = {}
    for line in remote_file_list.read_text().split('\n'):
        line = line.strip()
        if line.startswith('#'):
            continue
        elif line.startswith('root:'):
            root = line.split(':', 1)[1].strip()
        else:
            sig = line.split('-', 1)[0]
            assert sig not in models
            models[sig] = ROOT_URL + root + line
    return models

def get_model(name: str,
              repo: tp.Optional[Path] = None):
    """`name` must be a bag of models name or a pretrained signature
    from the remote AWS model repo or the specified local repo if `repo` is not None.
    """
    if name == 'demucs_unittest':
        return demucs_unittest()
    model_repo: ModelOnlyRepo
    if repo is None:
        models = _parse_remote_files(REMOTE_ROOT / 'files.txt')
        model_repo = RemoteRepo(models)
        bag_repo = BagOnlyRepo(REMOTE_ROOT, model_repo)
    else:
        if not repo.is_dir():
            fatal(f"{repo} must exist and be a directory.")
        model_repo = LocalRepo(repo)
        bag_repo = BagOnlyRepo(repo, model_repo)
    any_repo = AnyModelRepo(model_repo, bag_repo)
    model = any_repo.get_model(name)
    model.eval()
    return model

def get_model_from_args(args):
    """
    Load local model package or pre-trained model.
    """
    return get_model(name=args.name, repo=args.repo)

logger = logging.getLogger(__name__)
ROOT = "https://dl.fbaipublicfiles.com/demucs/v3.0/"

PRETRAINED_MODELS = {
    'demucs': 'e07c671f',
    'demucs48_hq': '28a1282c',
    'demucs_extra': '3646af93',
    'demucs_quantized': '07afea75',
    'tasnet': 'beb46fac',
    'tasnet_extra': 'df3777b2',
    'demucs_unittest': '09ebc15f',
}

SOURCES = ["drums", "bass", "other", "vocals"]


def get_url(name):
    sig = PRETRAINED_MODELS[name]
    return ROOT + name + "-" + sig[:8] + ".th"

def is_pretrained(name):
    return name in PRETRAINED_MODELS


def load_pretrained(name):
    if name == "demucs":
        return demucs(pretrained=True)
    elif name == "demucs48_hq":
        return demucs(pretrained=True, hq=True, channels=48)
    elif name == "demucs_extra":
        return demucs(pretrained=True, extra=True)
    elif name == "demucs_quantized":
        return demucs(pretrained=True, quantized=True)
    elif name == "demucs_unittest":
        return demucs_unittest(pretrained=True)
    elif name == "tasnet":
        return tasnet(pretrained=True)
    elif name == "tasnet_extra":
        return tasnet(pretrained=True, extra=True)
    else:
        raise ValueError(f"Invalid pretrained name {name}")


def _load_state(name, model, quantizer=None):
    url = get_url(name)
    state = torch.hub.load_state_dict_from_url(url, map_location='cpu', check_hash=True)
    set_state(model, quantizer, state)
    if quantizer:
        quantizer.detach()


def demucs_unittest(pretrained=True):
    model = Demucs(channels=4, sources=SOURCES)
    if pretrained:
        _load_state('demucs_unittest', model)
    return model


def demucs(pretrained=True, extra=False, quantized=False, hq=False, channels=64):
    if not pretrained and (extra or quantized or hq):
        raise ValueError("if extra or quantized is True, pretrained must be True.")
    model = Demucs(sources=SOURCES, channels=channels)
    if pretrained:
        name = 'demucs'
        if channels != 64:
            name += str(channels)
        quantizer = None
        if sum([extra, quantized, hq]) > 1:
            raise ValueError("Only one of extra, quantized, hq, can be True.")
        if quantized:
            quantizer = DiffQuantizer(model, group_size=8, min_size=1)
            name += '_quantized'
        if extra:
            name += '_extra'
        if hq:
            name += '_hq'
        _load_state(name, model, quantizer)
    return model


def tasnet(pretrained=True, extra=False):
    if not pretrained and extra:
        raise ValueError("if extra is True, pretrained must be True.")
    model = ConvTasNet(X=10, sources=SOURCES)
    if pretrained:
        name = 'tasnet'
        if extra:
            name = 'tasnet_extra'
        _load_state(name, model)
    return model