File size: 1,356 Bytes
e1aa7a1
2dd8e14
 
 
 
 
 
e1aa7a1
2dd8e14
 
 
 
 
 
 
 
 
 
 
e1aa7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from speechbrain.inference.separation import SepformerSeparation as separator
import torchaudio
import gradio as gr

model = separator.from_hparams(source="speechbrain/sepformer-wsj02mix", savedir='pretrained_models/sepformer-wsj02mix')

def speechbrain(aud):
  est_sources = model.separate_file(path=aud)
  torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
  torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
  return "source1hat.wav", "source2hat.wav"


title = "Speech Seperation"
description = "Gradio demo for Speech Seperation by SpeechBrain. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2010.13154' target='_blank'>Attention is All You Need in Speech Separation</a> | <a href='https://github.com/speechbrain/speechbrain/tree/develop/recipes/WSJ0Mix/separation' '_blank'>Github Repo</a></p>"
examples = [
    ['samples_audio_samples_test_mixture.wav']
]

demo = gr.Interface(
  fn=speechbrain,
  inputs=gr.Audio(type="filepath"),
  outputs=[
    gr.Audio(label="Output Audio One", type="filepath"),
    gr.Audio(label="Output Audio Two", type="filepath")
  ],
  title=title,
  description=description,
  article=article,
  examples=examples
)
demo.launch()