File size: 5,914 Bytes
8a41b12
 
 
 
6cf4630
8a41b12
b49549f
8a41b12
 
 
 
 
 
 
5e64660
8a41b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b833a3
 
 
 
 
8a41b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
949770f
3ed0fbb
 
 
 
0826835
3ed0fbb
170b8f2
 
 
7241256
170b8f2
d4c761d
 
0826835
d4c761d
 
 
 
8a41b12
48ac5d6
f82a7de
170b8f2
f82a7de
7241256
170b8f2
 
 
 
 
 
 
 
 
 
 
845d7e1
 
eb699d2
e37f6c3
949770f
 
 
e37f6c3
949770f
e37f6c3
949770f
e37f6c3
 
 
949770f
 
e37f6c3
 
 
 
 
949770f
e37f6c3
949770f
 
e37f6c3
 
949770f
 
e37f6c3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch 
import matplotlib.pyplot as plt
import numpy as np
import io
import os
import matplotlib
from PIL import Image
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import mpl_toolkits.mplot3d.axes3d as p3
from textwrap import wrap
import imageio

def plot_3d_motion(args, figsize=(10, 10), fps=120, radius=4):
    matplotlib.use('Agg')

    joints, out_name, title = args
    
    data = joints.copy().reshape(len(joints), -1, 3)
    
    nb_joints = joints.shape[1]
    smpl_kinetic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]] if nb_joints == 21 else [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
    limits = 1000 if nb_joints == 21 else 2
    MINS = data.min(axis=0).min(axis=0)
    MAXS = data.max(axis=0).max(axis=0)
    colors = ['red', 'blue', 'black', 'red', 'blue',
              'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue',
              'darkred', 'darkred', 'darkred', 'darkred', 'darkred']
    frame_number = data.shape[0]
    #     print(data.shape)

    height_offset = MINS[1]
    data[:, :, 1] -= height_offset
    trajec = data[:, 0, [0, 2]]

    data[..., 0] -= data[:, 0:1, 0]
    data[..., 2] -= data[:, 0:1, 2]

    def update(index):

        def init():
            ax.set_xlim(-limits, limits)
            ax.set_ylim(-limits, limits)
            ax.set_zlim(0, limits)
            ax.grid(b=False)
        def plot_xzPlane(minx, maxx, miny, minz, maxz):
            ## Plot a plane XZ
            verts = [
                [minx, miny, minz],
                [minx, miny, maxz],
                [maxx, miny, maxz],
                [maxx, miny, minz]
            ]
            xz_plane = Poly3DCollection([verts])
            xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
            ax.add_collection3d(xz_plane)
        fig = plt.figure(figsize=(480/96., 320/96.), dpi=96) if nb_joints == 21 else plt.figure(figsize=(10, 10), dpi=96)
        if title is not None :
            wraped_title = '\n'.join(wrap(title, 40))
            fig.suptitle(wraped_title, fontsize=16)
        ax = p3.Axes3D(fig)
        
        init()
        
        # ax.lines = []
        # ax.collections = []

        ax.clear()  # Clear the axes instead of directly setting attributes

        ax.view_init(elev=110, azim=-90)
        ax.dist = 7.5
        #         ax =
        plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
                     MAXS[2] - trajec[index, 1])
        #         ax.scatter(data[index, :22, 0], data[index, :22, 1], data[index, :22, 2], color='black', s=3)

        if index > 1:
            ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]),
                      trajec[:index, 1] - trajec[index, 1], linewidth=1.0,
                      color='blue')
        #             ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2])

        for i, (chain, color) in enumerate(zip(smpl_kinetic_chain, colors)):
            #             print(color)
            if i < 5:
                linewidth = 4.0
            else:
                linewidth = 2.0
            ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,
                      color=color)
        #         print(trajec[:index, 0].shape)

        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_zticklabels([])

        io_buf = io.BytesIO()
        plt.savefig(io_buf, format='png', dpi=96)
        io_buf.seek(0)
        img = Image.open(io_buf)
        frame = np.array(img.convert('RGB'), dtype=np.uint8)
        io_buf.close()
        
        plt.close(fig)
        return frame
    
    out = []
    for i in range(frame_number):
        frame = update(i)
        if frame.ndim == 3 and frame.shape[2] == 3:
            out.append(frame)
        else:
            print(f"Frame {i} has incorrect shape or channels: {frame.shape}")
    return out

def draw_to_batch(smpl_joints_batch, title_batch=None, outname=None):
    batch_size = len(smpl_joints_batch)
    frames = []
    for i in range(batch_size):
        frames.extend(plot_3d_motion([smpl_joints_batch[i], None, title_batch[i] if title_batch is not None else None]))
    
    if frames:
        gif_bytes = io.BytesIO()
        imageio.mimsave(gif_bytes, frames, format='GIF', fps=120)
        gif_bytes.seek(0)
        gif_data = gif_bytes.getvalue()
        print(f"Generated GIF for batch size {batch_size}, size: {len(gif_data)} bytes")
        return gif_data
    else:
        print("No valid frames to generate GIF.")
        return None


    
#         if out_name is not None : 
#             plt.savefig(out_name, dpi=96)
#             plt.close()
            
#         else : 
#             io_buf = io.BytesIO()
#             fig.savefig(io_buf, format='raw', dpi=96)
#             io_buf.seek(0)
#             # print(fig.bbox.bounds)
#             arr = np.reshape(np.frombuffer(io_buf.getvalue(), dtype=np.uint8),
#                                 newshape=(int(fig.bbox.bounds[3]), int(fig.bbox.bounds[2]), -1))
#             io_buf.close()
#             plt.close()
#             return arr

#     out = []
#     for i in range(frame_number) : 
#         out.append(update(i))
#     out = np.stack(out, axis=0)
#     return torch.from_numpy(out)


# def draw_to_batch(smpl_joints_batch, title_batch=None, outname=None) : 
    
#     batch_size = len(smpl_joints_batch)
#     out = []
#     for i in range(batch_size) : 
#         out.append(plot_3d_motion([smpl_joints_batch[i], None, title_batch[i] if title_batch is not None else None]))
#         if outname is not None:
#             imageio.mimsave(outname[i], np.array(out[-1]), fps=20)
#     out = torch.stack(out, axis=0)
#     return out