File size: 6,557 Bytes
7c3a67d
 
 
 
 
 
 
 
 
74b5d82
7c3a67d
 
 
 
 
 
6b45421
62d12b0
7c3a67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592c43f
7c3a67d
 
 
3e62df4
 
 
 
 
 
 
7c3a67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import base64
import io
import os
import tempfile
import wave
import torch
import numpy as np
from typing import List
from pydantic import BaseModel
import spaces

from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from TTS.utils.manage import ModelManager

os.environ["COQUI_TOS_AGREED"] = "1"

torch.set_num_threads(int(os.environ.get("NUM_THREADS", os.cpu_count())))
device = torch.device("cuda" if os.environ.get("USE_CPU", "0") == "0" else "cpu")
if not torch.cuda.is_available() and device == "cuda":
    raise RuntimeError("CUDA device unavailable, please use Dockerfile.cpu instead.") 

custom_model_path = os.environ.get("CUSTOM_MODEL_PATH", "/app/tts_models")

if os.path.exists(custom_model_path) and os.path.isfile(custom_model_path + "/config.json"):
    model_path = custom_model_path
    print("Loading custom model from", model_path, flush=True)
else:
    print("Loading default model", flush=True)
    model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
    print("Downloading XTTS Model:", model_name, flush=True)
    ModelManager().download_model(model_name)
    model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
    print("XTTS Model downloaded", flush=True)

print("Loading XTTS", flush=True)
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_dir=model_path, eval=True, use_deepspeed=True if device == "cuda" else False)
model.to(device)
print("XTTS Loaded.", flush=True)

print("Running XTTS Server ...", flush=True)



# @app.post("/clone_speaker")
def predict_speaker(wav_file):
    """Compute conditioning inputs from reference audio file."""
    temp_audio_name = next(tempfile._get_candidate_names())
    with open(temp_audio_name, "wb") as temp, torch.inference_mode():
        temp.write(io.BytesIO(wav_file.read()).getbuffer())
        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
            temp_audio_name
        )
    return {
        "gpt_cond_latent": gpt_cond_latent.cpu().squeeze().half().tolist(),
        "speaker_embedding": speaker_embedding.cpu().squeeze().half().tolist(),
    }


def postprocess(wav):
    """Post process the output waveform"""
    if isinstance(wav, list):
        wav = torch.cat(wav, dim=0)
    wav = wav.clone().detach().cpu().numpy()
    wav = wav[None, : int(wav.shape[0])]
    wav = np.clip(wav, -1, 1)
    wav = (wav * 32767).astype(np.int16)
    return wav


def encode_audio_common(

    frame_input, encode_base64=True, sample_rate=24000, sample_width=2, channels=1

):
    """Return base64 encoded audio"""
    wav_buf = io.BytesIO()
    with wave.open(wav_buf, "wb") as vfout:
        vfout.setnchannels(channels)
        vfout.setsampwidth(sample_width)
        vfout.setframerate(sample_rate)
        vfout.writeframes(frame_input)

    wav_buf.seek(0)
    if encode_base64:
        b64_encoded = base64.b64encode(wav_buf.getbuffer()).decode("utf-8")
        return b64_encoded
    else:
        return wav_buf.read()


class StreamingInputs(BaseModel):
    speaker_embedding: List[float]
    gpt_cond_latent: List[List[float]]
    text: str
    language: str
    add_wav_header: bool = True
    stream_chunk_size: str = "20"

#
#def predict_streaming_generator(parsed_input: dict = Body(...)):
#    speaker_embedding = torch.tensor(parsed_input.speaker_embedding).unsqueeze(0).unsqueeze(-1)
#    gpt_cond_latent = torch.tensor(parsed_input.gpt_cond_latent).reshape((-1, 1024)).unsqueeze(0)
#    text = parsed_input.text
#    language = parsed_input.language
#
#    stream_chunk_size = int(parsed_input.stream_chunk_size)
#    add_wav_header = parsed_input.add_wav_header
#
#
#    chunks = model.inference_stream(
#        text,
#        language,
#        gpt_cond_latent,
#        speaker_embedding,
#        stream_chunk_size=stream_chunk_size,
#        enable_text_splitting=True
#    )
#
#    for i, chunk in enumerate(chunks):
#        chunk = postprocess(chunk)
#        if i == 0 and add_wav_header:
#            yield encode_audio_common(b"", encode_base64=False)
#            yield chunk.tobytes()
#        else:
#            yield chunk.tobytes()
#
#
## @app.post("/tts_stream")
#def predict_streaming_endpoint(parsed_input: StreamingInputs):
#    return StreamingResponse(
#        predict_streaming_generator(parsed_input),
#        media_type="audio/wav",
#    )

class TTSInputs(BaseModel):
    speaker_embedding: List[float]
    gpt_cond_latent: List[List[float]]
    text: str
    language: str
    temperature: float
    speed: float
    top_k: int
    top_p: float

# @app.post("/tts")
@spaces.GPU
def predict_speech(parsed_input: TTSInputs):
    speaker_embedding = torch.tensor(parsed_input.speaker_embedding).unsqueeze(0).unsqueeze(-1)
    gpt_cond_latent = torch.tensor(parsed_input.gpt_cond_latent).reshape((-1, 1024)).unsqueeze(0)
    
    print("speaker embedding")
    print(speaker_embedding)
    
    print("latent")
    print(gpt_cond_latent)
    
    text = parsed_input.text
    language = parsed_input.language
    temperature = parsed_input.temperature
    speed = parsed_input.speed
    top_k = parsed_input.top_k
    top_p = parsed_input.top_p
    length_penalty = 1.0
    repetition_penalty= 2.0
    
    
    out = model.inference(
        text,
        language,
        gpt_cond_latent,
        speaker_embedding,
        temperature,
        length_penalty,
        repetition_penalty,
        top_k,
        top_p,
        speed,
    )

    wav = postprocess(torch.tensor(out["wav"]))

    return encode_audio_common(wav.tobytes())


# @app.get("/studio_speakers")
def get_speakers():
    if hasattr(model, "speaker_manager") and hasattr(model.speaker_manager, "speakers"):
        return {
            speaker: {
                "speaker_embedding": model.speaker_manager.speakers[speaker]["speaker_embedding"].cpu().squeeze().half().tolist(),
                "gpt_cond_latent": model.speaker_manager.speakers[speaker]["gpt_cond_latent"].cpu().squeeze().half().tolist(),
            }
            for speaker in model.speaker_manager.speakers.keys()
        }
    else:
        return {}
        
# @app.get("/languages")
def get_languages():
    return config.languages