File size: 5,988 Bytes
93ed498
e2ec341
f4903ba
0d02f18
addc716
93ed498
b43bcfd
17749ab
 
265da87
 
93ed498
 
 
16e49b4
4ad0753
e18bb87
 
4ad0753
17749ab
 
 
 
 
58a3a72
7b32bf2
 
 
16e49b4
58a3a72
 
 
16e49b4
 
 
 
 
 
93ed498
6390b56
 
06cc7e1
 
b43bcfd
 
6390b56
ec7e05a
 
84d8cd6
d1b5796
17a1b3f
 
d1b5796
 
54d537a
 
fd44c9c
09b1598
16da8b7
 
29e7041
3ae4a47
b4565b6
d491d34
 
cac98b2
7387712
bdd4365
1d433d0
7387712
1e4fd07
40bb237
db3767f
0888c95
0eaea57
c535860
29e7041
 
9b28aea
 
 
d972151
b4565b6
9b28aea
 
 
 
 
 
 
b5411ca
195b309
d491d34
4ad0753
 
3ae4a47
2d9088a
0d02f18
5554587
 
 
 
 
4ad0753
195b309
726ff10
93ed498
 
 
 
 
 
 
 
84e8a41
586b115
 
2cb2161
5554587
 
 
 
2cb2161
9b28aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c3c74
82c113d
ab6fbd7
b5411ca
2cb2161
 
 
 
 
d1b5796
84d8cd6
195b309
84d8cd6
 
ec7e05a
84d8cd6
 
6390b56
 
 
 
 
93ed498
6390b56
93ed498
6390b56
93ed498
6390b56
 
 
 
 
 
 
 
93ed498
6390b56
 
93ed498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil



"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""

from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
from accelerate import Accelerator


subprocess.run(
    "pip install psutil",
   
    shell=True,
)

import bitsandbytes as bnb  # Import bitsandbytes for 8-bit quantization



from datetime import datetime


subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'



token=os.getenv('token')
print('token = ',token)

from transformers import AutoModelForCausalLM, AutoTokenizer

# model_id = "mistralai/Mistral-7B-v0.3"

model_id = "microsoft/Phi-3-medium-4k-instruct"
# model_id = "Qwen/Qwen2-7B-Instruct"


tokenizer = AutoTokenizer.from_pretrained(
    # model_id
    model_id,
    # use_fast=False
    token= token,
trust_remote_code=True)


accelerator = Accelerator()

model = AutoModelForCausalLM.from_pretrained(model_id, token= token, 
                                                 # torch_dtype= torch.uint8, 
                                             torch_dtype=torch.bfloat16,
                                              # load_in_8bit=True,
                                             # #  # torch_dtype=torch.fl,
                                             attn_implementation="flash_attention_2",
                                             low_cpu_mem_usage=True,
                                             trust_remote_code=True,
                                             device_map='cuda',
                                             # device_map=accelerator.device_map,
                                             
                                            )





# 
model = accelerator.prepare(model)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)


# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })

# Load the model with the inferred device map
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
# model.half()

import json

def str_to_json(str_obj):
    json_obj = json.loads(str_obj)
    return json_obj


@spaces.GPU(duration=170)
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # yield 'retuend'
    # model.to(accelerator.device)

    messages = []
    json_obj = str_to_json(message)
    print(json_obj)
    
    messages= json_obj

    # input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
    # input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
    # print(f"Converted input_ids dtype: {input_ids.dtype}")
    # input_str= str(input_ids2)
    # print('input str = ', input_str)

    generation_args = {
    "max_new_tokens": max_tokens,
    "return_full_text": False,
    "temperature": temperature,
    "do_sample": False,
}

    output = pipe(messages, **generation_args)
    print(output[0]['generated_text'])
    gen_text=output[0]['generated_text']

    # with torch.no_grad():
    #     gen_tokens = model.generate(
    # input_ids, 
    # max_new_tokens=max_tokens, 
    # # do_sample=True, 
    # temperature=temperature,
    # )

    # gen_text = tokenizer.decode(gen_tokens[0])
    # print(gen_text)
    # gen_text= gen_text.replace(input_str,'')
    # gen_text= gen_text.replace('<|im_end|>','')
    
    yield gen_text
   
  
#     messages = [
#     # {"role": "user", "content": "What is your favourite condiment?"},
#     # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
#     # {"role": "user", "content": "Do you have mayonnaise recipes?"}
# ]

    # inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

    # outputs = model.generate(inputs, max_new_tokens=2000)
    # gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
   
    # print(gen_text)
    # yield gen_text
    # for val in history:
    #     if val[0]:
    #         messages.append({"role": "user", "content": val[0]})
    #     if val[1]:
    #         messages.append({"role": "assistant", "content": val[1]})

    # messages.append({"role": "user", "content": message})

    # response = ""

    # for message in client.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     stream=True,
    #     temperature=temperature,
    #     top_p=top_p,
    # ):
    #     token = message.choices[0].delta.content

    #     response += token
    #     yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()