File size: 7,283 Bytes
5231633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

import os
import yaml
import torch
from tqdm import tqdm
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from core.utils import load_or_fail
from train import WurstCoreB
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from train import WurstCore_t2i as WurstCoreC
import torch.nn.functional as F
from core.utils import load_or_fail
import numpy as np
import random
import math
import argparse
from einops import rearrange
import math
#inrfft_3b_strc_WurstCore
def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument( '--height', type=int, default=2560, help='image height')
    parser.add_argument('--width', type=int, default=5120, help='image width')
    parser.add_argument('--seed', type=int, default=123, help='random seed')
    parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
    parser.add_argument('--config_c', type=str, 
    default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation')
    parser.add_argument('--config_b', type=str, 
    default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
    parser.add_argument( '--prompt', type=str,
     default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
    parser.add_argument( '--num_image', type=int, default=10, help='how many images generated')
    parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
    parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
    parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
    args = parser.parse_args()
    return args



if __name__ == "__main__":
   
    args = parse_args()
    print(args)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)
    torch.manual_seed(args.seed)
    random.seed(args.seed) 
    np.random.seed(args.seed)
    dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
    #gdf = gdf_refine(
    #            schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
    #            input_scaler=VPScaler(), target=EpsilonTarget(),
    #            noise_cond=CosineTNoiseCond(),
    #            loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
    #        )
    # SETUP STAGE C
    config_file = args.config_c
    with open(config_file, "r", encoding="utf-8") as file:
        loaded_config = yaml.safe_load(file)
    
    core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
    
    # SETUP STAGE B
    config_file_b = args.config_b
    with open(config_file_b, "r", encoding="utf-8") as file:
        config_file_b = yaml.safe_load(file)
        
    core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
    
    extras = core.setup_extras_pre()
    models = core.setup_models(extras)
    models.generator.eval().requires_grad_(False)
    print("STAGE C READY")
    
    extras_b = core_b.setup_extras_pre()
    models_b = core_b.setup_models(extras_b, skip_clip=True)
    models_b = WurstCoreB.Models(
       **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
    )
    models_b.generator.bfloat16().eval().requires_grad_(False)
    print("STAGE B READY")
    
    captions = [args.prompt] * args.num_image
    

    height, width = args.height, args.width
    save_dir = args.output_dir
    
    if not os.path.exists(save_dir):
      os.makedirs(save_dir)
    
    pretrained_path = args.pretrained_path    
    sdd = torch.load(pretrained_path, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
        collect_sd[k[7:]] = v
    
    models.train_norm.load_state_dict(collect_sd)
    
    
    models.generator.eval()
    models.train_norm.eval()

    batch_size=1 
    height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
    stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
    stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
   
    # Stage C Parameters
    extras.sampling_configs['cfg'] = 4
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0
    extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
    
    
    
    # Stage B Parameters
    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0
    
    
    
    
    for cnt, caption in enumerate(captions):

       
        batch = {'captions': [caption] * batch_size}
        conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
        unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)    
        
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
        
         
        with torch.no_grad():
    
          
            models.generator.cuda()
            print('STAGE C GENERATION***************************')
            with torch.cuda.amp.autocast(dtype=dtype):
                sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
            
                
                  
            models.generator.cpu()
            torch.cuda.empty_cache()
            
            conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
            unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
            conditions_b['effnet'] = sampled_c
            unconditions_b['effnet'] = torch.zeros_like(sampled_c)
            print('STAGE B + A DECODING***************************')
            
            with torch.cuda.amp.autocast(dtype=dtype):
                    sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
            
            torch.cuda.empty_cache()
            imgs = show_images(sampled)
            for idx, img in enumerate(imgs):
                print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
                img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
                
            
    print('finished! Results at ', save_dir )