File size: 7,333 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from functools import partial

import torch
from torch import nn
from torch.nn.modules.transformer import _get_activation_fn, Module, Tensor, Optional, MultiheadAttention, Linear, Dropout, LayerNorm

from torch.utils.checkpoint import checkpoint


class TransformerEncoderLayer(Module):
    r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        activation: the activation function of intermediate layer, relu or gelu (default=relu).
        layer_norm_eps: the eps value in layer normalization components (default=1e-5).
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False``.

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        >>> src = torch.rand(10, 32, 512)
        >>> out = encoder_layer(src)

    Alternatively, when ``batch_first`` is ``True``:
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
        >>> src = torch.rand(32, 10, 512)
        >>> out = encoder_layer(src)
    """
    __constants__ = ['batch_first']

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
                 layer_norm_eps=1e-5, batch_first=False, pre_norm=False,
                 device=None, dtype=None, recompute_attn=False, save_trainingset_representations=False) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
                                            **factory_kwargs)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward, **factory_kwargs)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model, **factory_kwargs)

        self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
        self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)
        self.pre_norm = pre_norm
        self.recompute_attn = recompute_attn
        self.save_trainingset_representations = save_trainingset_representations
        self.saved_src_to_attend_to = None

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super().__setstate__(state)
        self.__dict__.setdefault('save_trainingset_representations', False)

    def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
        r"""Pass the input through the encoder layer.

        Args:
            src: the sequence to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        if self.save_trainingset_representations: assert isinstance(src_mask, int) and not self.training, \
            "save_trainingset_representations is only supported in eval mode and requires src_mask to be an int"

        if self.pre_norm:
            src_ = self.norm1(src)
        else:
            src_ = src
        if isinstance(src_mask, tuple):
            # global attention setup
            assert not self.self_attn.batch_first
            assert src_key_padding_mask is None

            global_src_mask, trainset_src_mask, valset_src_mask = src_mask

            num_global_tokens = global_src_mask.shape[0]
            num_train_tokens = trainset_src_mask.shape[0]

            global_tokens_src = src_[:num_global_tokens]
            train_tokens_src = src_[num_global_tokens:num_global_tokens+num_train_tokens]
            global_and_train_tokens_src = src_[:num_global_tokens+num_train_tokens]
            eval_tokens_src = src_[num_global_tokens+num_train_tokens:]


            attn = partial(checkpoint, self.self_attn) if self.recompute_attn else self.self_attn

            global_tokens_src2 = attn(global_tokens_src, global_and_train_tokens_src, global_and_train_tokens_src, None, True, global_src_mask)[0]
            train_tokens_src2 = attn(train_tokens_src, global_tokens_src, global_tokens_src, None, True, trainset_src_mask)[0]
            eval_tokens_src2 = attn(eval_tokens_src, src_, src_,
                                    None, True, valset_src_mask)[0]

            src2 = torch.cat([global_tokens_src2, train_tokens_src2, eval_tokens_src2], dim=0)

        elif isinstance(src_mask, int):
            assert src_key_padding_mask is None
            single_eval_position = src_mask
            src_to_attend_to = src_[:single_eval_position]
            if self.save_trainingset_representations:
                if single_eval_position == src_.shape[0] or single_eval_position is None:
                    self.saved_src_to_attend_to = src_to_attend_to
                elif single_eval_position == 0:
                    if self.saved_src_to_attend_to is None:
                        raise ValueError("First save the trainingset representations by passing in a src_mask of None or the length of the src")
                    src_to_attend_to = self.saved_src_to_attend_to
                else:
                    raise ValueError("save_trainingset_representations only supports single_eval_position == 0 or single_eval_position == src.shape[0]")
            src_left = self.self_attn(src_[:single_eval_position], src_[:single_eval_position], src_[:single_eval_position])[0]
            src_right = self.self_attn(src_[single_eval_position:], src_to_attend_to, src_to_attend_to)[0]
            src2 = torch.cat([src_left, src_right], dim=0)
        else:
            if self.recompute_attn:
                src2 = checkpoint(self.self_attn, src_, src_, src_, src_key_padding_mask, True, src_mask)[0]
            else:
                src2 = self.self_attn(src_, src_, src_, attn_mask=src_mask,
                                      key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        if not self.pre_norm:
            src = self.norm1(src)

        if self.pre_norm:
            src_ = self.norm2(src)
        else:
            src_ = src
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src_))))
        src = src + self.dropout2(src2)

        if not self.pre_norm:
            src = self.norm2(src)
        return src