Spaces:
Sleeping
Sleeping
File size: 21,149 Bytes
165ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
from .utils import print_once
import torch
from torch import nn
class BarDistribution(nn.Module):
def __init__(self, borders: torch.Tensor, smoothing=.0, ignore_nan_targets=True): # here borders should start with min and end with max, where all values lie in (min,max) and are sorted
'''
:param borders:
:param smoothing:
:param append_mean_pred: Whether to predict the mean of the other positions as a last output in forward,
is enabled when additionally y has a sequence length 1 shorter than logits, i.e. len(logits) == 1 + len(y)
'''
super().__init__()
assert len(borders.shape) == 1
self.register_buffer('borders', borders)
self.register_buffer('smoothing', torch.tensor(smoothing))
self.register_buffer('bucket_widths', self.borders[1:] - self.borders[:-1])
full_width = self.bucket_widths.sum()
assert (1 - (full_width / (self.borders[-1] - self.borders[0]))).abs() < 1e-2, f'diff: {full_width - (self.borders[-1] - self.borders[0])} with {full_width} {self.borders[-1]} {self.borders[0]}'
assert (self.bucket_widths >= 0.0).all() , "Please provide sorted borders!" # This also allows size zero buckets
self.num_bars = len(borders) - 1
self.ignore_nan_targets = ignore_nan_targets
self.to(borders.device)
def __setstate__(self, state):
super().__setstate__(state)
self.__dict__.setdefault('append_mean_pred', False)
def map_to_bucket_idx(self, y):
target_sample = torch.searchsorted(self.borders, y) - 1
target_sample[y == self.borders[0]] = 0
target_sample[y == self.borders[-1]] = self.num_bars - 1
return target_sample
def ignore_init(self, y):
ignore_loss_mask = torch.isnan(y)
if ignore_loss_mask.any():
if not self.ignore_nan_targets: raise ValueError(f'Found NaN in target {y}')
print_once("A loss was ignored because there was nan target.")
y[ignore_loss_mask] = self.borders[0] # this is just a default value, it will be ignored anyway
return ignore_loss_mask
def compute_scaled_log_probs(self, logits):
# this is equivalent to log(p(y)) of the density p
bucket_log_probs = torch.log_softmax(logits, -1)
scaled_bucket_log_probs = bucket_log_probs - torch.log(self.bucket_widths)
return scaled_bucket_log_probs
def forward(self, logits, y, mean_prediction_logits=None): # gives the negative log density (the _loss_), y: T x B, logits: T x B x self.num_bars
y = y.clone().view(*logits.shape[:-1]) # no trailing one dimension
ignore_loss_mask = self.ignore_init(y)
target_sample = self.map_to_bucket_idx(y)
assert (target_sample >= 0).all() and (target_sample < self.num_bars).all(), f'y {y} not in support set for borders (min_y, max_y) {self.borders}'
assert logits.shape[-1] == self.num_bars, f'{logits.shape[-1]} vs {self.num_bars}'
scaled_bucket_log_probs = self.compute_scaled_log_probs(logits)
nll_loss = -scaled_bucket_log_probs.gather(-1,target_sample[..., None]).squeeze(-1) # T x B
if mean_prediction_logits is not None:
if not self.training:
print('Calculating loss incl mean prediction loss for nonmyopic BO.')
scaled_mean_log_probs = self.compute_scaled_log_probs(mean_prediction_logits)
nll_loss = torch.cat((nll_loss, self.mean_loss(logits, scaled_mean_log_probs)), 0)
smooth_loss = -scaled_bucket_log_probs.mean(dim=-1)
smoothing = self.smoothing if self.training else 0.
loss = (1. - smoothing) * nll_loss + smoothing * smooth_loss
loss[ignore_loss_mask] = 0.
return loss
def mean_loss(self, logits, scaled_mean_logits):
assert (len(logits.shape) == 3) and (len(scaled_mean_logits.shape) == 2), \
(len(logits.shape), len(scaled_mean_logits.shape))
means = self.mean(logits).detach() # T x B
target_mean = self.map_to_bucket_idx(means).clamp_(0, self.num_bars - 1) # T x B
return -scaled_mean_logits.gather(1, target_mean.T).mean(1).unsqueeze(0) # 1 x B
def mean(self, logits):
bucket_means = self.borders[:-1] + self.bucket_widths/2
p = torch.softmax(logits, -1)
return p @ bucket_means
def median(self, logits):
return self.icdf(logits, 0.5)
def icdf(self, logits, left_prob):
"""
Implementation of the quantile function
:param logits: Tensor of any shape, with the last dimension being logits
:param left_prob: float: The probability mass to the left of the result.
:return: Position with `left_prob` probability weight to the left.
"""
probs = logits.softmax(-1)
cumprobs = torch.cumsum(probs, -1)
idx = torch.searchsorted(cumprobs, left_prob * torch.ones(*cumprobs.shape[:-1], 1, device=logits.device))\
.squeeze(-1).clamp(0, cumprobs.shape[-1] - 1) # this might not do the right for outliers
cumprobs = torch.cat([torch.zeros(*cumprobs.shape[:-1], 1, device=logits.device), cumprobs], -1)
rest_prob = left_prob - cumprobs.gather(-1, idx[..., None]).squeeze(-1)
left_border = self.borders[idx]
right_border = self.borders[idx+1]
return left_border + (right_border - left_border) * rest_prob / probs.gather(-1, idx[..., None]).squeeze(-1)
def quantile(self, logits, center_prob=.682):
side_probs = (1.-center_prob)/2
return torch.stack((self.icdf(logits, side_probs), self.icdf(logits, 1.-side_probs)),-1)
def ucb(self, logits, best_f, rest_prob=(1-.682)/2, maximize=True):
"""
UCB utility. Rest Prob is the amount of utility above (below) the confidence interval that is ignored.
Higher rest_prob is equivalent to lower beta in the standard GP-UCB formulation.
:param logits: Logits, as returned by the Transformer.
:param rest_prob: The amount of utility above (below) the confidence interval that is ignored.
The default is equivalent to using GP-UCB with `beta=1`.
To get the corresponding `beta`, where `beta` is from
the standard GP definition of UCB `ucb_utility = mean + beta * std`,
you can use this computation: `beta = math.sqrt(2)*torch.erfinv(torch.tensor(2*(1-rest_prob)-1))`.
:param maximize:
:return: utility
"""
if maximize:
rest_prob = 1 - rest_prob
return self.icdf(logits, rest_prob)
def mode(self, logits):
mode_inds = logits.argmax(-1)
bucket_means = self.borders[:-1] + self.bucket_widths/2
return bucket_means[mode_inds]
def ei(self, logits, best_f, maximize=True): # logits: evaluation_points x batch x feature_dim
bucket_diffs = self.borders[1:] - self.borders[:-1]
assert maximize
if not torch.is_tensor(best_f) or not len(best_f.shape):
best_f = torch.full(logits[...,0].shape, best_f, device=logits.device)
best_f = best_f[..., None].repeat(*[1]*len(best_f.shape), logits.shape[-1])
clamped_best_f = best_f.clamp(self.borders[:-1], self.borders[1:])
#bucket_contributions = (best_f[...,None] < self.borders[:-1]).float() * bucket_means
# true bucket contributions
bucket_contributions = ((self.borders[1:]**2-clamped_best_f**2)/2 - best_f*(self.borders[1:] - clamped_best_f))/bucket_diffs
p = torch.softmax(logits, -1)
return torch.einsum("...b,...b->...", p, bucket_contributions)
def pi(self, logits, best_f, maximize=True):# logits: evaluation_points x batch x feature_dim
"""
Acquisition Function: Probability of Improvement
:param logits: as returned by Transformer
:param best_f: best evaluation so far (the incumbent)
:param maximize: whether to maximize
:return: utility
"""
assert maximize is True
if not torch.is_tensor(best_f) or not len(best_f.shape):
best_f = torch.full(logits[...,0].shape, best_f, device=logits.device)
p = torch.softmax(logits, -1)
border_widths = self.borders[1:] - self.borders[:-1]
factor = 1. - ((best_f[...,None] - self.borders[:-1]) / border_widths).clamp(0., 1.)
return (p * factor).sum(-1)
def mean_of_square(self, logits):
"""
Computes E[x^2].
:param logits: Output of the model.
"""
left_borders = self.borders[:-1]
right_borders = self.borders[1:]
bucket_mean_of_square = (left_borders.square() + right_borders.square() + left_borders*right_borders)/3.
p = torch.softmax(logits, -1)
return p @ bucket_mean_of_square
def variance(self, logits):
return self.mean_of_square(logits) - self.mean(logits).square()
def pi(self, logits, best_f, maximize=True):# logits: evaluation_points x batch x feature_dim
"""
Acquisition Function: Probability of Improvement
:param logits: as returned by Transformer
:param best_f: best evaluation so far (the incumbent)
:param maximize: whether to maximize
:return: utility
"""
assert maximize is True
p = torch.softmax(logits, -1)
border_widths = self.borders[1:] - self.borders[:-1]
factor = 1. - ((best_f - self.borders[:-1]) / border_widths).clamp(0., 1.)
return (p * factor).sum(-1)
def mean_of_square(self, logits):
"""
Computes E[x^2].
:param logits: Output of the model.
"""
left_borders = self.borders[:-1]
right_borders = self.borders[1:]
bucket_mean_of_square = (left_borders.square() + right_borders.square() + left_borders*right_borders)/3.
p = torch.softmax(logits, -1)
return p @ bucket_mean_of_square
def variance(self, logits):
return self.mean_of_square(logits) - self.mean(logits).square()
class FullSupportBarDistribution(BarDistribution):
@staticmethod
def halfnormal_with_p_weight_before(range_max,p=.5):
s = range_max / torch.distributions.HalfNormal(torch.tensor(1.)).icdf(torch.tensor(p))
return torch.distributions.HalfNormal(s)
def forward(self, logits, y, mean_prediction_logits=None): # gives the negative log density (the _loss_), y: T x B, logits: T x B x self.num_bars
assert self.num_bars > 1
y = y.clone().view(len(y),-1) # no trailing one dimension
ignore_loss_mask = self.ignore_init(y) # alters y
target_sample = self.map_to_bucket_idx(y) # shape: T x B (same as y)
target_sample.clamp_(0, self.num_bars - 1)
assert logits.shape[-1] == self.num_bars, f'{logits.shape[-1]} vs {self.num_bars}'
assert (target_sample >= 0).all() and (target_sample < self.num_bars).all(), \
f'y {y} not in support set for borders (min_y, max_y) {self.borders}'
assert logits.shape[-1] == self.num_bars, f'{logits.shape[-1]} vs {self.num_bars}'
# ignore all position with nan values
scaled_bucket_log_probs = self.compute_scaled_log_probs(logits)
assert len(scaled_bucket_log_probs) == len(target_sample), (len(scaled_bucket_log_probs), len(target_sample))
log_probs = scaled_bucket_log_probs.gather(-1, target_sample.unsqueeze(-1)).squeeze(-1)
side_normals = (self.halfnormal_with_p_weight_before(self.bucket_widths[0]), self.halfnormal_with_p_weight_before(self.bucket_widths[-1]))
log_probs[target_sample == 0] += side_normals[0].log_prob((self.borders[1]-y[target_sample == 0]).clamp(min=.00000001)) + torch.log(self.bucket_widths[0])
log_probs[target_sample == self.num_bars-1] += side_normals[1].log_prob((y[target_sample == self.num_bars-1]-self.borders[-2]).clamp(min=.00000001)) + torch.log(self.bucket_widths[-1])
nll_loss = -log_probs
if mean_prediction_logits is not None:
assert not ignore_loss_mask.any(), "Ignoring examples is not implemented with mean pred."
if not self.training:
print('Calculating loss incl mean prediction loss for nonmyopic BO.')
if not torch.is_grad_enabled():
print("Warning: loss is not correct in absolute terms, only the gradient is right, when using `append_mean_pred`.")
scaled_mean_log_probs = self.compute_scaled_log_probs(mean_prediction_logits)
nll_loss = torch.cat((nll_loss, self.mean_loss(logits, scaled_mean_log_probs)), 0)
#ignore_loss_mask = torch.zeros_like(nll_loss, dtype=torch.bool)
if self.smoothing:
smooth_loss = -scaled_bucket_log_probs.mean(dim=-1)
smoothing = self.smoothing if self.training else 0.
nll_loss = (1. - smoothing) * nll_loss + smoothing * smooth_loss
if ignore_loss_mask.any():
nll_loss[ignore_loss_mask] = 0.
return nll_loss
def mean(self, logits):
bucket_means = self.borders[:-1] + self.bucket_widths / 2
p = torch.softmax(logits, -1)
side_normals = (self.halfnormal_with_p_weight_before(self.bucket_widths[0]),
self.halfnormal_with_p_weight_before(self.bucket_widths[-1]))
bucket_means[0] = -side_normals[0].mean + self.borders[1]
bucket_means[-1] = side_normals[1].mean + self.borders[-2]
return p @ bucket_means.to(logits.device)
def mean_of_square(self, logits):
"""
Computes E[x^2].
:param logits: Output of the model.
"""
left_borders = self.borders[:-1]
right_borders = self.borders[1:]
bucket_mean_of_square = (left_borders.square() + right_borders.square() + left_borders*right_borders)/3.
side_normals = (self.halfnormal_with_p_weight_before(self.bucket_widths[0]),
self.halfnormal_with_p_weight_before(self.bucket_widths[-1]))
bucket_mean_of_square[0] = side_normals[0].variance + (-side_normals[0].mean + self.borders[1]).square()
bucket_mean_of_square[-1] = side_normals[1].variance + (side_normals[1].variance + self.borders[-2]).square()
p = torch.softmax(logits, -1)
return p @ bucket_mean_of_square
def pi(self, logits, best_f, maximize=True):# logits: evaluation_points x batch x feature_dim
"""
Acquisition Function: Probability of Improvement
:param logits: as returned by Transformer (evaluation_points x batch x feature_dim)
:param best_f: best evaluation so far (the incumbent)
:param maximize: whether to maximize
:return: utility
"""
assert maximize is True
if not torch.is_tensor(best_f) or not len(best_f.shape):
best_f = torch.full(logits[...,0].shape, best_f, device=logits.device) # evaluation_points x batch
assert best_f.shape == logits[...,0].shape, f"best_f.shape: {best_f.shape}, logits.shape: {logits.shape}"
p = torch.softmax(logits, -1) # evaluation_points x batch
border_widths = self.borders[1:] - self.borders[:-1]
factor = 1. - ((best_f[...,None] - self.borders[:-1]) / border_widths).clamp(0., 1.) # evaluation_points x batch x num_bars
side_normals = (self.halfnormal_with_p_weight_before(self.bucket_widths[0]),
self.halfnormal_with_p_weight_before(self.bucket_widths[-1]))
position_in_side_normals = (-(best_f - self.borders[1]).clamp(max=0.), (best_f - self.borders[-2]).clamp(min=0.)) # evaluation_points x batch
factor[...,0] = 0.
factor[...,0][position_in_side_normals[0] > 0.] = side_normals[0].cdf(position_in_side_normals[0][position_in_side_normals[0] > 0.])
factor[...,-1] = 1.
factor[...,-1][position_in_side_normals[1] > 0.] = 1. - side_normals[1].cdf(position_in_side_normals[1][position_in_side_normals[1] > 0.])
return (p * factor).sum(-1)
def ei_for_halfnormal(self, scale, best_f, maximize=True):
"""
This is the EI for a standard normal distribution with mean 0 and variance `scale` times 2.
Which is the same as the half normal EI.
I tested this with MC approximation:
ei_for_halfnormal = lambda scale, best_f: (torch.distributions.HalfNormal(torch.tensor(scale)).sample((10_000_000,))- best_f ).clamp(min=0.).mean()
print([(ei_for_halfnormal(scale,best_f), FullSupportBarDistribution().ei_for_halfnormal(scale,best_f)) for scale in [0.1,1.,10.] for best_f in [.1,10.,4.]])
:param scale:
:param best_f:
:param maximize:
:return:
"""
assert maximize
mean = torch.tensor(0.)
u = (mean - best_f) / scale
normal = torch.distributions.Normal(torch.zeros_like(u), torch.ones_like(u))
try:
ucdf = normal.cdf(u)
except ValueError:
print(f"u: {u}, best_f: {best_f}, scale: {scale}")
raise
updf = torch.exp(normal.log_prob(u))
normal_ei = scale * (updf + u * ucdf)
return 2*normal_ei
def ei(self, logits, best_f, maximize=True): # logits: evaluation_points x batch x feature_dim
if torch.isnan(logits).any():
raise ValueError(f"logits contains NaNs: {logits}")
bucket_diffs = self.borders[1:] - self.borders[:-1]
assert maximize
if not torch.is_tensor(best_f) or not len(best_f.shape):
best_f = torch.full(logits[...,0].shape, best_f, device=logits.device)
assert best_f.shape == logits[...,0].shape, f"best_f.shape: {best_f.shape}, logits.shape: {logits.shape}"
best_f_per_logit = best_f[..., None].repeat(*[1]*len(best_f.shape), logits.shape[-1])
clamped_best_f = best_f_per_logit.clamp(self.borders[:-1], self.borders[1:])
# true bucket contributions
bucket_contributions = ((self.borders[1:]**2-clamped_best_f**2)/2 - best_f_per_logit*(self.borders[1:] - clamped_best_f))/bucket_diffs
# extra stuff for continuous
side_normals = (self.halfnormal_with_p_weight_before(self.bucket_widths[0]),
self.halfnormal_with_p_weight_before(self.bucket_widths[-1]))
position_in_side_normals = (-(best_f - self.borders[1]).clamp(max=0.),
(best_f - self.borders[-2]).clamp(min=0.)) # evaluation_points x batch
bucket_contributions[...,-1] = self.ei_for_halfnormal(side_normals[1].scale, position_in_side_normals[1])
bucket_contributions[...,0] = self.ei_for_halfnormal(side_normals[0].scale, torch.zeros_like(position_in_side_normals[0])) \
- self.ei_for_halfnormal(side_normals[0].scale, position_in_side_normals[0])
p = torch.softmax(logits, -1)
return torch.einsum("...b,...b->...", p, bucket_contributions)
def get_bucket_limits(num_outputs:int, full_range:tuple=None, ys:torch.Tensor=None, verbose:bool=False):
assert (ys is None) != (full_range is None), 'Either full_range or ys must be passed.'
if ys is not None:
ys = ys.flatten()
ys = ys[~torch.isnan(ys)]
if len(ys) % num_outputs: ys = ys[:-(len(ys) % num_outputs)]
print(f'Using {len(ys)} y evals to estimate {num_outputs} buckets. Cut off the last {len(ys) % num_outputs} ys.')
ys_per_bucket = len(ys) // num_outputs
if full_range is None:
full_range = (ys.min(), ys.max())
else:
assert full_range[0] <= ys.min() and full_range[1] >= ys.max(), f'full_range {full_range} not in range of ys {ys.min(), ys.max()}'
full_range = torch.tensor(full_range)
ys_sorted, ys_order = ys.sort(0)
bucket_limits = (ys_sorted[ys_per_bucket-1::ys_per_bucket][:-1]+ys_sorted[ys_per_bucket::ys_per_bucket])/2
if verbose:
print(f'Using {len(ys)} y evals to estimate {num_outputs} buckets. Cut off the last {len(ys) % num_outputs} ys.')
print(full_range)
bucket_limits = torch.cat([full_range[0].unsqueeze(0), bucket_limits, full_range[1].unsqueeze(0)],0)
else:
class_width = (full_range[1] - full_range[0]) / num_outputs
bucket_limits = torch.cat([full_range[0] + torch.arange(num_outputs).float()*class_width, torch.tensor(full_range[1]).unsqueeze(0)], 0)
assert len(bucket_limits) - 1 == num_outputs, f'len(bucket_limits) - 1 == {len(bucket_limits) - 1} != {num_outputs} == num_outputs'
assert full_range[0] == bucket_limits[0], f'{full_range[0]} != {bucket_limits[0]}'
assert full_range[-1] == bucket_limits[-1], f'{full_range[-1]} != {bucket_limits[-1]}'
return bucket_limits
def get_custom_bar_dist(borders, criterion):
# Tested that a bar_dist with borders 0.54 (-> softplus 1.0) yields the same bar distribution as the passed one.
borders_ = torch.nn.functional.softplus(borders) + 0.001
borders_ = (torch.cumsum(torch.cat([criterion.borders[0:1], criterion.bucket_widths]) * borders_, 0))
criterion_ = criterion.__class__(borders=borders_, handle_nans=criterion.handle_nans)
return criterion_
|