File size: 14,107 Bytes
165ee00
 
 
 
 
 
ac0b917
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0b917
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import contextlib
import torch
import scipy
import math
from sklearn.preprocessing import power_transform, PowerTransformer, StandardScaler

# from torchvision.transforms.functional import to_tensor
from pfns4bo import transformer
from pfns4bo import bar_distribution

import torch
import numpy as np

import pfns4bo
from pfns4bo.scripts.acquisition_functions import TransformerBOMethod


import warnings
warnings.filterwarnings('ignore')

device = torch.device("cpu")
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float32


from sklearn.utils import resample

@torch.enable_grad()
def Rosen_PFN(model_name,
              trained_X, 
              trained_Y, 
              X_pen,
              trasform_type,
              what_do_you_want
             ):
    
    PFN = TransformerBOMethod(torch.load(model_name).requires_grad_(False), device=device)

    # X_pen.requires_grad_(True)

    # with torch.no_grad():


    dim = trained_X.shape[1]

    x_given = trained_X
    x_eval = X_pen
    x_predict = torch.cat([x_given, x_eval], dim=0)
    x_full_feed = torch.cat([x_given, x_given, x_eval], dim=0).unsqueeze(1)



    if trasform_type== 'std':
        pt = StandardScaler()
        pt.fit(trained_Y)
        PT_trained_Y = pt.transform(trained_Y)
        # trained_Y = to_tensor(PT_trained_Y).to(torch.float32).reshape(trained_Y.shape)
    elif trasform_type== 'power':
        pt = PowerTransformer(method="yeo-johnson")
        pt.fit(trained_Y.detach().numpy())
        # PT_trained_Y = pt.transform(trained_Y.detach().numpy())
        # trained_Y = to_tensor(PT_trained_Y).to(torch.float32).reshape(trained_Y.shape)
        # print(trained_Y.shape)

        # print(trained_Y)
        trained_Y, _ = general_power_transform(trained_Y, 
                                            trained_Y, 
                                            .0, 
                                            less_safe=False) #.squeeze(1)
        # print(trained_Y.shape)
        # .squeeze(1)


        # y_given = general_power_transform(y_given.unsqueeze(1), 
        #                                   y_given.unsqueeze(1), 
        #                                   .0, 
        #                                   less_safe=False).squeeze(1)

    y_given = trained_Y

    y_given = y_given.reshape(-1)
    y_full_feed = y_given.unsqueeze(1)

    criterion: bar_distribution.BarDistribution = PFN.model.criterion

    style = None
    logits = PFN.model(
                (style,
                 x_full_feed.repeat_interleave(dim=1, repeats=y_full_feed.shape[1]),
                 y_full_feed.repeat(1,x_full_feed.shape[1])),
                single_eval_pos=len(x_given)
            )

    # logits = logits.softmax(-1).log_()
    logits = logits.softmax(-1).log()

    logits_given = logits[:len(x_given)]
    logits_eval = logits[len(x_given):]

    best_f = torch.max(y_given)

    if what_do_you_want == 'mean':
        output = criterion.mean(logits_eval)

        
        if trasform_type== 'std' or trasform_type== 'power':
            
            if pt.standardize:
                XX = output.clone()
                scale = torch.from_numpy(pt._scaler.scale_)
                std_mean = torch.from_numpy(pt._scaler.mean_)
                XX = torch_std_inverse_transform(XX, scale, std_mean)
            
            for i, lmbda in enumerate(pt.lambdas_):
                with np.errstate(invalid="ignore"):  # hide NaN warnings
                    XX = torch_power_inverse_transform(XX, lmbda)
                    # print(XX)
                    return XX
            



            
            # output = pt.inverse_transform(output)
            # output = torch.from_numpy(output)
            
            
    elif what_do_you_want == 'ei':
        output = criterion.ei(logits_eval, best_f)
        
    elif what_do_you_want == 'ucb':
        acq_function = criterion.ucb
        ucb_rest_prob = .05
        if ucb_rest_prob is not None:
            acq_function = lambda *args: criterion.ucb(*args, rest_prob=ucb_rest_prob)
        output = acq_ensembling(acq_function(logits_eval, best_f))
        
    elif what_do_you_want == 'variance':
        output = criterion.variance(logits_eval)
        
    elif what_do_you_want == 'mode':
        output = criterion.mode(logits_eval)
        
    elif what_do_you_want == 'ts':
        mn = criterion.mean(logits_eval)
        
        
        if trasform_type== 'std' or trasform_type== 'power':
            
            if pt.standardize:
                XX = mn.clone()
                scale = torch.from_numpy(pt._scaler.scale_)
                std_mean = torch.from_numpy(pt._scaler.mean_)
                XX = torch_std_inverse_transform(XX, scale, std_mean)
            
            for i, lmbda in enumerate(pt.lambdas_):
                with np.errstate(invalid="ignore"):  # hide NaN warnings
                    XX = torch_power_inverse_transform(XX, lmbda)

        var = criterion.variance(logits_eval)

        return XX, var
        
    return output











def Rosen_PFN_Parallel(model_name,
                       trained_X, 
                       trained_Y, 
                       GX,
                       X_pen,
                       trasform_type,
                       what_do_you_want
                      ):
    
    PFN = TransformerBOMethod(torch.load(model_name), device=device)

    with torch.no_grad():


        dim = trained_X.shape[1]

        x_given = trained_X
        x_eval = X_pen
        x_predict = torch.cat([x_given, x_eval], dim=0)
        x_full_feed = torch.cat([x_given, x_given, x_eval], dim=0).unsqueeze(1)
        
        
        
        y_given = trained_Y
        y_given = y_given.reshape(-1)
        
        ######################################################################
        # Objective Power Transform
        y_given, pt_y = general_power_transform(y_given.unsqueeze(1), 
                                          y_given.unsqueeze(1), 
                                          .0, 
                                          less_safe=False)
        y_given = y_given.squeeze(1)
        ######################################################################
        

        ######################################################################
        # Constraints Power Transform
        # Changes for Parallel:
        GX = -GX
        GX_t, pt_GX = general_power_transform(GX, GX, .0, less_safe=False)
        G_thres, _ = general_power_transform(GX, 
                                          torch.zeros((1, GX.shape[1])).to(GX.device), 
                                          .0, 
                                          less_safe=False)
        GX = GX_t
        ######################################################################
        

        
        y_full_feed = y_given.unsqueeze(1)

        criterion: bar_distribution.BarDistribution = PFN.model.criterion

        style = None
        logits = PFN.model(
                    (style,
                     x_full_feed.repeat_interleave(dim=1, repeats=y_full_feed.shape[1]+GX.shape[1]),
                     torch.cat([y_full_feed, GX], dim=1).unsqueeze(2) ),
                    single_eval_pos=len(x_given)
                )
        
        logits = logits.softmax(-1).log_()

        logits_given = logits[:len(x_given)]
        logits_eval = logits[len(x_given):]
        
        best_f = torch.max(y_given)
        
        objective_given = logits_given[:,0,:].unsqueeze(1)
        objective_eval  = logits_eval[:,0,:].unsqueeze(1)
        constraint_given = logits_given[:,1:,:]
        constraint_eval  = logits_eval[:,1:,:]
        
        
        
        if what_do_you_want == 'mean':
            obj_output = criterion.mean(objective_eval)
            con_output = criterion.mean(constraint_eval)
            
        elif what_do_you_want == 'ei':
            # Changes for CEI

            # Objective
            tau = torch.max(y_given)
            objective_acq_value = acq_ensembling(criterion.ei(objective_eval, tau))

            # Constraints
            constraints_acq_value = acq_ensembling(criterion.pi(constraint_eval[:,0,:].unsqueeze(1), G_thres[0, 0].item()))
            constraints_acq_value = constraints_acq_value.unsqueeze(1)


            for jj in range(1,constraint_eval.shape[1]):
                next_constraints_acq_value = acq_ensembling(criterion.pi(constraint_eval[:,jj,:].unsqueeze(1), G_thres[0, jj].item()))
                next_constraints_acq_value = next_constraints_acq_value.unsqueeze(1)
                constraints_acq_value = torch.cat([constraints_acq_value,next_constraints_acq_value], dim=1)

            return objective_acq_value, constraints_acq_value

            
        elif what_do_you_want == 'variance':
            output = criterion.variance(logits_eval)
        elif what_do_you_want == 'mode':
            output = criterion.mode(logits_eval)
        elif what_do_you_want == 'cts':
            obj_mnn = criterion.mean(objective_eval)
            obj_mnn = pt_y.inverse_transform(obj_mnn)
            obj_mnn = torch.from_numpy(obj_mnn)
            
            
            con_mnn = criterion.mean(constraint_eval)
            con_mnn = pt_GX.inverse_transform(con_mnn)
            con_mnn = torch.from_numpy(-con_mnn)
            
            obj_varr = criterion.variance(objective_eval)
            con_varr = criterion.variance(constraint_eval)
            
            return obj_mnn, obj_varr, con_mnn, con_varr
            
            
            
    return output




def acq_ensembling(acq_values): # (points, ensemble dim)
        return acq_values.max(1).values







def torch_std_inverse_transform(X, scale, mean):
    X *= scale
    X += mean
    return X


def torch_power_inverse_transform(x, lmbda):
    out = torch.zeros_like(x)
    pos = x >= 0

    # when x >= 0
    if abs(lmbda) < np.spacing(1.0):
        out[pos] = torch.exp(x[pos])-1
    else:  # lmbda != 0
        out[pos] = torch.pow(x[pos] * lmbda + 1, 1 / lmbda) - 1

    # when x < 0
    if abs(lmbda - 2) > np.spacing(1.0):
        out[~pos] = 1 - torch.pow(-(2 - lmbda) * x[~pos] + 1, 1 / (2 - lmbda))
    else:  # lmbda == 2
        out[~pos] = 1 - torch.exp(-x[~pos])

    return out





















################################################################################
## PFN defined functions
################################################################################


def log01(x, eps=.0000001, input_between_zero_and_one=False):
    logx = torch.log(x + eps)
    if input_between_zero_and_one:
        return (logx - math.log(eps)) / (math.log(1 + eps) - math.log(eps))
    return (logx - logx.min(0)[0]) / (logx.max(0)[0] - logx.min(0)[0])

def log01_batch(x, eps=.0000001, input_between_zero_and_one=False):
    x = x.repeat(1, x.shape[-1] + 1, 1)
    for b in range(x.shape[-1]):
        x[:, b, b] = log01(x[:, b, b], eps=eps, input_between_zero_and_one=input_between_zero_and_one)
    return x

def lognormed_batch(x, eval_pos, eps=.0000001):
    x = x.repeat(1, x.shape[-1] + 1, 1)
    for b in range(x.shape[-1]):
        logx = torch.log(x[:, b, b]+eps)
        x[:, b, b] = (logx - logx[:eval_pos].mean(0))/logx[:eval_pos].std(0)
    return x

def _rank_transform(x_train, x):
    assert len(x_train.shape) == len(x.shape) == 1
    relative_to = torch.cat((torch.zeros_like(x_train[:1]),x_train.unique(sorted=True,), torch.ones_like(x_train[-1:])),-1)
    higher_comparison = (relative_to < x[...,None]).sum(-1).clamp(min=1)
    pos_inside_interval = (x - relative_to[higher_comparison-1])/(relative_to[higher_comparison] - relative_to[higher_comparison-1])
    x_transformed = higher_comparison - 1 + pos_inside_interval
    return x_transformed/(len(relative_to)-1.)

def rank_transform(x_train, x):
    assert x.shape[1] == x_train.shape[1], f"{x.shape=} and {x_train.shape=}"
    # make sure everything is between 0 and 1
    assert (x_train >= 0.).all() and (x_train <= 1.).all(), f"{x_train=}"
    assert (x >= 0.).all() and (x <= 1.).all(), f"{x=}"
    return_x = x.clone()
    for feature_dim in range(x.shape[1]):
        return_x[:, feature_dim] = _rank_transform(x_train[:, feature_dim], x[:, feature_dim])
    return return_x



def general_power_transform(x_train, x_apply, eps, less_safe=False):

    # print('in function')
    # print(x_train)
    # print(x_apply)
    # print('in function')
    
    if eps > 0:
        try:
            pt = PowerTransformer(method='box-cox')
            pt.fit(x_train.cpu()+eps)
            x_out = torch.tensor(pt.transform(x_apply.cpu()+eps), dtype=x_apply.dtype, device=x_apply.device)
        except Exception as e:
            print(e)
            x_out = x_apply - x_train.mean(0)
            print(x_train)
            print(x_out)
    else:
        pt = PowerTransformer(method='yeo-johnson')
        if not less_safe and (x_train.std() > 1_000 or x_train.mean().abs() > 1_000):
            x_apply = (x_apply - x_train.mean(0)) / x_train.std(0)
            x_train = (x_train - x_train.mean(0)) / x_train.std(0)
            # print('inputs are LAARGEe, normalizing them')
        try:
            pt.fit(x_train.cpu().double())
        # except ValueError as e:
        except Exception as e:
            # print(x_train)
            # print('caught this errrr', e)
            if less_safe:
                x_train = (x_train - x_train.mean(0)) / x_train.std(0)
                x_apply = (x_apply - x_train.mean(0)) / x_train.std(0)
            else:
                x_train = x_train - x_train.mean(0)
                x_apply = x_apply - x_train.mean(0)
            # print(x_train)
            pt.fit(x_train.cpu().double())
            # print(x_train)
        x_out = torch.tensor(pt.transform(x_apply.cpu()), dtype=x_apply.dtype, device=x_apply.device)
    if torch.isnan(x_out).any() or torch.isinf(x_out).any():
        print('WARNING: power transform failed')
        print(f"{x_train=} and {x_apply=}")
        x_out = x_apply - x_train.mean(0)
    return x_out, pt