File size: 8,052 Bytes
f1667dd
 
 
 
 
949e6ab
aa997ed
f1667dd
f46b0a9
 
f1667dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef9cef
 
 
 
 
 
 
 
 
 
 
 
 
 
f1667dd
 
d719f9b
f1667dd
 
 
 
 
 
 
 
 
 
 
 
 
 
c1a3d27
f1667dd
 
 
 
 
4ef9cef
f1667dd
 
 
 
f46b0a9
 
 
 
f1667dd
 
 
 
c03347d
 
 
 
 
4ef9cef
c03347d
 
 
 
 
 
 
f1667dd
b52e342
 
 
6f570d6
 
 
b52e342
 
 
 
 
 
 
 
 
 
6f570d6
 
 
 
 
 
 
b52e342
6f570d6
 
 
 
 
b52e342
6f570d6
 
 
 
f1667dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
949e6ab
 
 
 
 
 
 
 
f1667dd
 
 
 
 
 
 
 
aa997ed
 
 
 
 
 
 
 
 
 
 
 
 
f1667dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from huggingface_hub import HfFileSystem
import pandas as pd
from utils import logger
from datetime import datetime
import threading
import traceback
import json

# NOTE: if caching is an issue, try adding `use_listings_cache=False`
fs = HfFileSystem()

IMPORTANT_MODELS = [
    "auto",
    "bert",  # old but dominant (encoder only)
    "gpt2",  # old (decoder)
    "t5",  # old (encoder-decoder)
    "modernbert",  # (encoder only)
    "vit",  # old (vision) - fixed comma
    "clip",  # old but dominant (vision)
    "detr",  # objection detection, segmentation (vision)
    "table-transformer",  # objection detection (visioin) - maybe just detr?
    "got_ocr2",  # ocr (vision)
    "whisper",  # old but dominant (audio)
    "wav2vec2",  # old (audio)
    "llama",  # new and dominant (meta)
    "gemma3",  # new (google)
    "qwen2",  # new (Alibaba)
    "mistral3",  # new (Mistral) - added missing comma
    "qwen2_5_vl",  # new (vision)
    "llava",  # many models from it (vision)
    "smolvlm",  # new (video)
    "internvl",  # new (video)
    "gemma3n",  # new (omnimodal models)
    "qwen2_5_omni",  # new (omnimodal models)
]

KEYS_TO_KEEP = [
    "success_amd",
    "success_nvidia",
    "skipped_amd",
    "skipped_nvidia",
    "failed_multi_no_amd",
    "failed_multi_no_nvidia",
    "failed_single_no_amd",
    "failed_single_no_nvidia",
    "failures_amd",
    "failures_nvidia",
    "job_link_amd",
    "job_link_nvidia",
]

def read_one_dataframe(json_path: str, device_label: str) -> pd.DataFrame:
    logger.info(f"Reading df located at {json_path}")
    df = pd.read_json(json_path, orient="index")
    df.index.name = "model_name"
    df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
    df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
    return df

def get_distant_data() -> pd.DataFrame:
    # Retrieve AMD dataframe
    amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
    files_amd = sorted(fs.glob(amd_src), reverse=True)
    df_amd = read_one_dataframe(f"hf://{files_amd[0]}", "amd")
    # Retrieve NVIDIA dataframe
    nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/**/ci_results_run_models_gpu/model_results.json"
    files_nvidia = sorted(fs.glob(nvidia_src), reverse=True)
    # NOTE: should this be removeprefix instead of lstrip?
    nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')
    nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path
    df_nvidia = read_one_dataframe(nvidia_path, "nvidia")
    # Join both dataframes
    joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
    joined = joined[KEYS_TO_KEEP]
    joined.index = joined.index.str.replace("^models_", "", regex=True)
    # Fitler out all but important models
    important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
    filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
    # Warn for ach missing important models
    for model in IMPORTANT_MODELS:
        if model not in filtered_joined.index:
            print(f"[WARNING] Model {model} was missing from index.")            
    return filtered_joined


def get_sample_data() -> pd.DataFrame:
    # Retrieve sample dataframes
    df_amd = read_one_dataframe("sample_amd.json", "amd")
    df_nvidia = read_one_dataframe("sample_nvidia.json", "nvidia")
    # Join both dataframes
    joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
    joined = joined[KEYS_TO_KEEP]
    joined.index = joined.index.str.replace("^models_", "", regex=True)
    # Fitler out all but important models
    important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
    filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
    # Prefix all model names with "sample_"
    filtered_joined.index = "sample_" + filtered_joined.index
    return filtered_joined

def safe_extract(row: pd.DataFrame, key: str) -> int:
    return int(row.get(key, 0)) if pd.notna(row.get(key, 0)) else 0

def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]:
    """Extract and process model data from DataFrame row."""
    # Handle missing values and get counts directly from dataframe
    success_nvidia = safe_extract(row, "success_nvidia")
    success_amd = safe_extract(row, "success_amd")

    skipped_nvidia = safe_extract(row, "skipped_nvidia")
    skipped_amd = safe_extract(row, "skipped_amd")
    
    failed_multi_amd = safe_extract(row, 'failed_multi_no_amd')
    failed_multi_nvidia = safe_extract(row, 'failed_multi_no_nvidia')
    failed_single_amd = safe_extract(row, 'failed_single_no_amd')
    failed_single_nvidia = safe_extract(row, 'failed_single_no_nvidia')
    # Calculate total failures
    total_failed_amd = failed_multi_amd + failed_single_amd
    total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
    # Create stats dictionaries directly from dataframe values
    amd_stats = {
        'passed': success_amd,
        'failed': total_failed_amd,
        'skipped': skipped_amd,
        'error': 0     # Not available in this dataset
    }
    nvidia_stats = {
        'passed': success_nvidia,
        'failed': total_failed_nvidia,
        'skipped': skipped_nvidia,
        'error': 0     # Not available in this dataset
    }
    return amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia



class CIResults:

    def __init__(self):
        self.df = pd.DataFrame()
        self.available_models = []
        self.last_update_time = ""

    def load_data(self) -> None:
        """Load data from the data source."""
        # Try loading the distant data, and fall back on sample data for local tinkering
        try:
            logger.info("Loading distant data...")
            new_df = get_distant_data()
        except Exception as e:
            error_msg = [
                "Loading data failed:",
                "-" * 120,
                traceback.format_exc(),
                "-" * 120,
                "Falling back on sample data."
            ]
            logger.error("\n".join(error_msg))
            new_df = get_sample_data()
        # Update attributes
        self.df = new_df
        self.available_models = new_df.index.tolist()
        self.last_update_time = datetime.now().strftime('%H:%M')
        # Log and return distant load status
        logger.info(f"Data loaded successfully: {len(self.available_models)} models")
        logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}")
        logger.info(f"Last update: {self.last_update_time}")
        # Log a preview of the df
        msg = {}
        for model in self.available_models[:3]:
            msg[model] = {}
            for col in self.df.columns:
                value = self.df.loc[model, col]
                if not isinstance(value, int):
                    value = str(value)
                    if len(value) > 10:
                        value = value[:10] + "..."
                msg[model][col] = value
        logger.info(json.dumps(msg, indent=4))

    def schedule_data_reload(self):
        """Schedule the next data reload."""
        def reload_data():
            self.load_data()
            # Schedule the next reload in 15 minutes (900 seconds)
            timer = threading.Timer(900.0, reload_data)
            timer.daemon = True  # Dies when main thread dies
            timer.start()
            logger.info("Next data reload scheduled in 15 minutes")

        # Start the first reload timer
        timer = threading.Timer(900.0, reload_data)
        timer.daemon = True
        timer.start()
        logger.info("Data auto-reload scheduled every 15 minutes")