File size: 5,542 Bytes
86b7caa
 
ea26600
86b7caa
 
cfff27b
 
925ce67
0fb0810
cfff27b
dd35c43
 
 
ea26600
cfff27b
0fb0810
 
 
e53d8c9
cfff27b
953c4c1
0fb0810
 
 
 
cfff27b
ea26600
 
 
 
925ce67
 
 
 
 
 
 
cfff27b
925ce67
 
0fb0810
953c4c1
 
 
 
 
 
 
 
 
cfff27b
925ce67
 
 
 
 
 
 
 
 
cfff27b
 
 
 
 
 
 
 
 
 
 
953c4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea26600
 
925ce67
 
 
 
 
 
ea26600
 
 
925ce67
 
 
 
ea26600
 
 
 
925ce67
 
ea26600
953c4c1
ea26600
 
 
 
 
 
 
 
 
 
 
 
 
 
925ce67
 
 
cfff27b
 
 
 
925ce67
 
 
 
cfff27b
925ce67
 
 
 
 
 
 
 
 
86b7caa
 
953c4c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import streamlit as st
import PyPDF2
import matplotlib.pyplot as plt
from io import BytesIO
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.fastembed import FastEmbedEmbedding
import re
import requests
import dotenv

# Load environment variables
dotenv.load_dotenv()

# Configure Hugging Face API for Sarvam model
API_URL = "https://api-inference.huggingface.co/models/sarvamai/sarvam-2b-v0.5"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}

# Configure embedding model
Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5")

def query_huggingface_api(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

def write_to_file(content, filename="./files/uploaded.pdf"):
    os.makedirs(os.path.dirname(filename), exist_ok=True)
    with open(filename, "wb") as f:
        f.write(content)

def extract_financial_data(document_text):
    financial_data = {
        "Revenue": [],
        "Date": []
    }
    lines = document_text.split("\n")
    revenue_pattern = re.compile(r'\$?\d+(?:,\d{3})*(?:\.\d+)?')
    
    for i, line in enumerate(lines):
        if any(keyword in line.lower() for keyword in ["revenue", "total revenue", "sales"]):
            for j in range(i + 1, i + 6):
                if j < len(lines):
                    matches = revenue_pattern.findall(lines[j])
                    if matches:
                        for match in matches:
                            try:
                                value = float(match.replace("$", "").replace(",", ""))
                                financial_data["Revenue"].append(value)
                            except ValueError:
                                continue
        
        if "Q1" in line or "Q2" in line or "Q3" in line or "Q4" in line or re.search(r'FY\s*\d{4}', line):
            financial_data["Date"].append(line.strip())

    min_length = min(len(financial_data["Revenue"]), len(financial_data["Date"]))
    financial_data["Revenue"] = financial_data["Revenue"][:min_length]
    financial_data["Date"] = financial_data["Date"][:min_length]

    return financial_data

def ingest_documents():
    reader = SimpleDirectoryReader("./files/")
    documents = reader.load_data()
    return documents

def load_data(documents):
    index = VectorStoreIndex.from_documents(documents)
    return index

def generate_summary(index, document_text, query):
    query_engine = index.as_query_engine()
    prompt = f"""
    You are a financial analyst. Your task is to provide a comprehensive analysis of the financial document.
    Analyze the following document and respond to the query:
    {document_text}
    
    Query: {query}
    
    If the query is too general, respond with:
    Please cover the following aspects:
    1. Revenue and profit trends
    2. Key financial metrics
    3. Major financial events and decisions
    4. Comparison with previous periods
    5. Future outlook or forecasts
    6. Any notable financial risks or opportunities
    
    Provide a clear, concise, and professional response.
    """
    response = query_huggingface_api({"inputs": prompt})
    return response[0]["generated_text"] if response and isinstance(response, list) else "No response from model."

def generate_comparison_graph(data):
    if not data["Date"] or not data["Revenue"]:
        st.write("Insufficient data for generating the revenue comparison graph.")
        return

    fig, ax = plt.subplots(figsize=(10, 6))
    ax.plot(data["Date"], data["Revenue"], marker="o", linestyle="-", color="b", label="Revenue")
    ax.set_title("Revenue Comparison")
    ax.set_xlabel("Date")
    ax.set_ylabel("Revenue (in millions)")
    ax.grid(True)
    ax.legend()
    plt.xticks(rotation=45, ha="right")
    plt.tight_layout()
    st.pyplot(fig)

# Streamlit app
def main():
    st.title("Fortune 500 Financial Document Analyzer")
    st.write("Upload a financial document, ask questions, and get detailed analysis!")

    uploaded_file = st.file_uploader("Choose a financial document file", type=["pdf", "txt"])

    if uploaded_file is not None:
        if uploaded_file.type == "application/pdf":
            pdf_reader = PyPDF2.PdfReader(BytesIO(uploaded_file.getvalue()))
            document_text = ""
            for page in pdf_reader.pages:
                document_text += page.extract_text()
        else:
            document_text = uploaded_file.getvalue().decode("utf-8")

        write_to_file(uploaded_file.getvalue())

        st.write("Analyzing financial document...")

        # Extract financial data
        financial_data = extract_financial_data(document_text)

        # Ingest documents for summarization and query-driven analysis
        documents = ingest_documents()
        index = load_data(documents)

        # Add a provision for user query input
        query = st.text_input("Enter your financial analysis query (e.g., 'What are the revenue trends?')", "")

        if query:
            summary = generate_summary(index, document_text, query)
            st.write("## Financial Analysis Result")
            st.write(summary)

        # Display revenue comparison graph
        if financial_data["Revenue"] and financial_data["Date"]:
            st.write("## Revenue Comparison")
            generate_comparison_graph(financial_data)
        else:
            st.write("No revenue data found for comparison.")

if __name__ == "__main__":
    main()