Spaces:
Build error
Build error
File size: 19,094 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import gc
import os
import threading
import torch
from torch.distributed.fsdp import FullOptimStateDictConfig, FullStateDictConfig
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import StateDictType
from cosmos_predict1.utils import callback, distributed, log, misc
from cosmos_predict1.utils.config import CheckpointConfig, JobConfig
from cosmos_predict1.utils.easy_io import easy_io
from cosmos_predict1.utils.fsdp_optim_fix import scatter_full_optim_state_dict
from cosmos_predict1.utils.model import Model
class FSDPCheckpointer:
"""The checkpointer class. Supports checkpoint saving/loading to local disk."""
def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup):
"""Constructor of the checkpointer.
Args:
config_checkpoint (CheckpointConfig): The config object for the checkpointer.
"""
# Set the callback functions.
self.callbacks = callbacks
self.checkpoint_dir_local = f"{config_job.path_local}/checkpoints"
self.strict_resume = config_checkpoint.strict_resume
self.load_path = config_checkpoint.load_path
self.load_training_state = config_checkpoint.load_training_state
self.save_thread = None
self.config_checkpoint = config_checkpoint
def _load_ckpt_file_during_init(self):
latest_checkpoint_file = self._read_latest_checkpoint_file()
if latest_checkpoint_file is not None:
# 1. Resume training from latest_checkpoint.txt under the same name.
checkpoint_dir = self.checkpoint_dir_local
checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file)
resume = True
log.critical(f"[Checkpoint] Found latest checkpoint file: {latest_checkpoint_file}")
log.critical(f"[Checkpoint] Loading from local path: {checkpoint_path}")
log.critical("[Checkpoint] Will resume full training state (model, optimizer, scheduler)")
else:
if self.load_path:
# 2. Load the module weights specified by config_checkpoint.path.
checkpoint_path = self.load_path
resume = self.load_training_state
log.critical(f"[Checkpoint] Using specified checkpoint path: {checkpoint_path}")
if resume:
log.critical("[Checkpoint] Will load complete training state (model, optimizer, scheduler)")
else:
log.critical("[Checkpoint] Will load model weights only (no optimizer/scheduler state)")
else:
# 3. Randomly initialize the model parameters and train from scratch.
checkpoint_path = None
resume = False
log.critical("[Checkpoint] No checkpoint path specified")
log.critical("[Checkpoint] Starting fresh training with random initialization")
return checkpoint_path, resume
@misc.timer("FSDP.load_model_during_init")
def load_model_during_init(self, model, is_ema=False, ema_id: int = 0):
if ema_id > 0:
assert is_ema, "ema_id should be used with is_ema=True"
checkpoint_path, _ = self._load_ckpt_file_during_init()
if checkpoint_path is not None:
tag = "reg" if not is_ema else "ema"
default_checkpoint_path = checkpoint_path.replace(".pt", f"_{tag}_model.pt")
if not os.path.exists(default_checkpoint_path):
default_checkpoint_path = checkpoint_path # starting from the release checkpoint
log.warning(f"is_ema={is_ema} model is not found. Loading from {default_checkpoint_path}")
if tag == "ema" and ema_id > 0:
_checkpoint_path = checkpoint_path.replace(".pt", f"_RANK{ema_id}.pt")
_checkpoint_path = _checkpoint_path.replace(".pt", f"_{tag}_model.pt")
if self._check_checkpoint_exists(_checkpoint_path, is_raise=False):
default_checkpoint_path = _checkpoint_path
else:
print(
f"{distributed.get_rank()}: Checkpoint not found: {_checkpoint_path} "
f"(fallback to {default_checkpoint_path})"
)
checkpoint_path = default_checkpoint_path
self._check_checkpoint_exists(checkpoint_path)
log.info(f"Loading checkpoint (local): {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False)
log.success(f"Complete loading checkpoint (local): {checkpoint_path}")
log.info("- Loading the model...")
if self.strict_resume:
log.info(model.load_state_dict(state_dict, strict=self.strict_resume))
else:
log.critical("\t Using non-strict model")
from cosmos_predict1.diffusion.training.utils.checkpointer import non_strict_load_model
log.info(non_strict_load_model(model, state_dict))
log.info("-finish model loading")
else:
log.info(f"is_ema={is_ema} model is not found and loaded.")
@misc.timer("FSDP.load_optim_scheduler_during_init")
def load_optim_scheduler_during_init(self, fsdp_model, optimizer, scheduler):
checkpoint_path, resume = self._load_ckpt_file_during_init()
log.critical(f"Loading optimizer and scheduler: {checkpoint_path} (resume: {resume}")
if checkpoint_path is not None:
if resume:
checkpoint_path = checkpoint_path.replace(".pt", "_optim.pt")
self._check_checkpoint_exists(checkpoint_path)
if distributed.get_rank() == 0:
log.info(f"Loading checkpoint (local): {checkpoint_path}")
state_dict = torch.load(
checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False
)
log.success(f"Complete loading checkpoint (local): {checkpoint_path}")
log.info("- Loading the optimizer (FSDP scatter)...")
else:
state_dict = {
"optimizer": None,
"scheduler": None,
}
distributed.barrier()
sharded_optimizer_state_dict = scatter_full_optim_state_dict( # <---- FSDP
state_dict["optimizer"],
fsdp_model,
)
log.info("- Loading the optimizer (FSDP load_state_dict)...")
log.info(optimizer.load_state_dict(sharded_optimizer_state_dict))
log.critical("Skip loading the scheduler...")
return
log.info("- Loading the scheduler...")
scheduler.load_state_dict(state_dict["scheduler"])
@misc.timer("FSDP get_optim_scheduler_state")
def get_optim_scheduler_state(self, optim, fsdp_model, scheduler):
with FSDP.state_dict_type(
fsdp_model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True),
):
optim_statedict = FSDP.full_optim_state_dict(fsdp_model, optim)
scheduler_statedict = scheduler.state_dict()
return {
"optimizer": optim_statedict,
"scheduler": scheduler_statedict,
}
def save(
self,
model: Model,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler.LRScheduler,
grad_scaler: torch.amp.GradScaler,
iteration: int,
async_saving: bool = True,
) -> None:
"""Save network weights, optimizer parameters, scheduler parameters to a checkpoint.
Args:
model (Model): The PyTorch model.
optimizer (torch.optim.Optimizer): The model optimizer.
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training).
iteration (int): Current iteration number.
"""
self.callbacks.on_save_checkpoint_start(model, iteration)
model_state_dict = model.state_dict_model()
optim_scheduler_state_dict = self.get_optim_scheduler_state(optimizer, model.model, scheduler)
torch.cuda.empty_cache()
state_dict = dict(
iteration=iteration,
)
self.callbacks.on_save_checkpoint(model, state_dict=state_dict)
postfix, replicate_idx, shard_idx, total_ema_num = model.get_ckpt_postfix()
if replicate_idx == 0 and shard_idx == 0:
pass # save whole; it is rank0
elif replicate_idx < total_ema_num and shard_idx == 0:
model_state_dict["model"] = None # only save ema
optim_scheduler_state_dict = None
state_dict = None
else:
return
checkpoint_file = f"iter_{iteration:09}{postfix}.pt"
if async_saving:
# Wait for previous saver thread to end.
if self.save_thread:
self.save_thread.join()
# Run the checkpoint saver in a separate thread.
self.save_thread = threading.Thread(
target=self._save_worker_local,
daemon=False,
args=(
model_state_dict,
optim_scheduler_state_dict,
state_dict,
checkpoint_file,
distributed.get_rank(),
),
)
self.save_thread.start()
log.info("checkpoint saving from an async thread")
else:
torch.cuda.empty_cache()
# Run the checkpoint saver in the current thread.
self._save_worker_local(
model_state_dict, optim_scheduler_state_dict, state_dict, checkpoint_file, distributed.get_rank()
)
log.info("checkpoint saved within the main thread")
del model_state_dict, optim_scheduler_state_dict, state_dict
gc.collect()
torch.cuda.empty_cache()
self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration)
@misc.timer("checkpoint saving (local)")
def _save_worker_local(
self,
model_state_dict: dict[str, torch.Tensor],
optim_scheduler_state_dict: dict[str, torch.Tensor],
state_dict: dict[str, torch.Tensor],
checkpoint_file: str,
rank: int = 0,
) -> None:
"""Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training).
Args:
state_dict (dict[str, torch.Tensor]): The state dict of the model/optimizer/scheduler.
checkpoint_file (str): The file name of the model checkpoint.
rank (int): GPU device (default: 0).
"""
checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file)
os.makedirs(self.checkpoint_dir_local, exist_ok=True)
try:
model_state_dict, ema_model_state_dict = model_state_dict["model"], model_state_dict["ema"]
if model_state_dict is not None:
torch.save(model_state_dict, checkpoint_path.replace(".pt", "_reg_model.pt"))
if ema_model_state_dict is not None:
torch.save(ema_model_state_dict, checkpoint_path.replace(".pt", "_ema_model.pt"))
if optim_scheduler_state_dict is not None:
torch.save(optim_scheduler_state_dict, checkpoint_path.replace(".pt", "_optim.pt"))
if state_dict is not None:
torch.save(state_dict, checkpoint_path)
if rank == 0:
self._write_latest_checkpoint_file(checkpoint_file)
log.success(f"Saved checkpoint (local): {checkpoint_path}")
iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", ""))
self.callbacks.on_save_checkpoint_success(iteration=iteration)
except Exception as e: # noqa: BLE001
log.exception(f"Checkpoint failed to save (local): {e}")
@misc.timer("checkpoint loading")
def load(
self,
model: Model,
optimizer: torch.optim.Optimizer | None = None,
scheduler: torch.optim.lr_scheduler.LRScheduler | None = None,
grad_scaler: torch.amp.GradScaler | None = None,
) -> int:
"""Load network weights and optimizer states from a checkpoint in a single process.
The priority of the checkpoint loading logic is:
1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name.
2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path.
- This is typically used for inference mode.
- If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states.
3. If none of the above, randomly initialize the model parameters and train from scratch.
Args:
model (FSDPDiffModle): The PyTorch model.
optimizer (torch.optim.Optimizer | None): The model optimizer (default: None).
scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None).
grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training).
Returns:
iteration (int): the iteration number to start/resume from.
"""
self.callbacks.on_load_checkpoint_start(model)
del optimizer, grad_scaler
checkpoint_path, resume = self._load_ckpt_file_during_init()
iteration = 0
if checkpoint_path is not None:
self._check_checkpoint_exists(checkpoint_path)
log.info(f"Loading checkpoint (local): {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False)
log.success(f"Complete loading checkpoint (local): {checkpoint_path}")
self.callbacks.on_load_checkpoint(model, state_dict=state_dict)
if resume:
iteration = state_dict["iteration"]
log.success("Done with loading the checkpoint.")
else:
log.info("Training from scratch.")
torch.cuda.empty_cache()
self.callbacks.on_load_checkpoint_end(model)
if scheduler is not None:
scheduler.last_epoch = iteration
log.critical(f"resume scheduler from {iteration}", rank0_only=False)
return iteration
def _read_latest_checkpoint_file(self) -> str | None:
"""Get the file name of the latest saved checkpoint. If it doesn't exist, return None.
Returns:
checkpoint_file (str | None): file name of the latest saved checkpoint.
"""
checkpoint_file = None
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt")
if os.path.isfile(latest_path):
checkpoint_file = open(latest_path).read().strip()
if checkpoint_file is None:
log.warning(f"Latest ckpt file not found: {latest_path}")
else:
log.info(f"Found latest checkpoint: {checkpoint_file}")
return checkpoint_file
def _write_latest_checkpoint_file(self, checkpoint_file: str) -> None:
"""Track the file name of the latest saved checkpoint.
Args:
checkpoint_file (str): file name of the latest saved checkpoint.
"""
content = f"{checkpoint_file}\n"
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt")
with open(latest_path, "w") as file:
file.write(content)
def _check_checkpoint_exists(self, checkpoint_path: str, is_raise: bool = True) -> None:
"""If the file checkpoint_path does not exist, raise an error.
Args:
checkpoint_path (str): full path to the checkpoint.
"""
if not os.path.exists(checkpoint_path):
if is_raise:
raise FileNotFoundError(f"File not found (local): {checkpoint_path}")
return False
return True
def finalize(self) -> None:
"""Finalize the checkpointer."""
if self.save_thread:
self.save_thread.join()
class FSDPInferenceCheckpointer:
def __init__(
self,
ckpt_path: str,
strict_resume: bool = True,
):
self.ckpt_path = ckpt_path
self.strict_resume = strict_resume
@misc.timer("FSDPInferenceCheckpointer.load_model_during_init")
def load_model_during_init(self, model, is_ema=False, ema_id: int = 0):
del ema_id
if is_ema:
log.warning("EMA model is not supported in inference mode.")
return
assert easy_io.exists(self.ckpt_path)
log.info(f"Loading from {self.ckpt_path}")
state_dict = torch.load(self.ckpt_path, map_location=lambda storage, loc: storage, weights_only=False)
if self.strict_resume:
log.info(model.load_state_dict(state_dict, strict=self.strict_resume))
else:
log.critical("\t Using non-strict model")
from cosmos_predict1.diffusion.training.utils.checkpointer import non_strict_load_model
log.info(non_strict_load_model(model, state_dict))
log.info("-finish model loading")
def load_optim_scheduler_during_init(self, *args, **kwargs):
"""
We do not do load in inference mode. The function is here to maintain the same interface to avoid errors.
"""
pass
def save(self, *args, **kwargs):
"""
We do not save anything in inference mode. The function is here to maintain the same interface to avoid errors.
"""
pass
def load(self, *args, **kwargs):
"""
We do not do load in inference mode. The function is here to maintain the same interface to avoid errors.
"""
return 0
|