Spaces:
Build error
Build error
File size: 22,906 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The combined loss functions for continuous-space tokenizers training."""
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import torchvision.models.optical_flow as optical_flow
from cosmos_predict1.tokenizer.modules.utils import batch2time, time2batch
from cosmos_predict1.tokenizer.training.datasets.utils import INPUT_KEY, LATENT_KEY, MASK_KEY, RECON_KEY
from cosmos_predict1.tokenizer.training.losses import ReduceMode
from cosmos_predict1.tokenizer.training.losses.lpips import LPIPS
from cosmos_predict1.utils.lazy_config import instantiate
_VALID_LOSS_NAMES = ["color", "perceptual", "flow", "kl", "video_consistency"]
VIDEO_CONSISTENCY_LOSS = "video_consistency"
RECON_CONSISTENCY_KEY = f"{RECON_KEY}_consistency"
class TokenizerLoss(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.config = config
_reduce = ReduceMode(config.reduce.upper()) if hasattr(config, "reduce") else None
self.reduce = _reduce.function
self.loss_modules = nn.ModuleDict()
for key in _VALID_LOSS_NAMES:
self.loss_modules[key] = instantiate(getattr(config, key)) if hasattr(config, key) else NullLoss()
def forward(self, inputs, output_batch, iteration) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
loss = dict()
total_loss = 0.0
inputs[MASK_KEY] = torch.ones_like(inputs[INPUT_KEY])
# Calculates reconstruction losses (`total_loss`).
for key, module in self.loss_modules.items():
curr_loss = module(inputs, output_batch, iteration)
loss.update({k: torch.mean(v) for k, v in curr_loss.items()})
total_loss += sum([self.reduce(v) if (v.dim() > 0) else v for v in curr_loss.values()])
loss.update({k: torch.mean(v) for k, v in curr_loss.items()})
# Computes the overall loss as sum of the reconstruction losses and the generator loss.
total_loss += sum([self.reduce(v) if (v.dim() > 0) else v for v in curr_loss.values()])
return dict(loss=loss), total_loss
class WeightScheduler(torch.nn.Module):
def __init__(self, boundaries, values):
super().__init__()
self.boundaries = list(boundaries)
self.values = list(values)
def forward(self, iteration):
for boundary, value in zip(self.boundaries, self.values):
if iteration < boundary:
return value
return self.values[-1]
class NullLoss(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, inputs, output_batch, iteration) -> dict[dict, torch.Tensor]:
return dict()
class ColorLoss(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.schedule = WeightScheduler(boundaries=config.boundaries, values=config.values)
def forward(self, inputs, output_batch, iteration) -> dict[str, torch.Tensor]:
reconstructions = output_batch[RECON_KEY]
weights = inputs[MASK_KEY]
recon = weights * torch.abs(inputs[INPUT_KEY].contiguous() - reconstructions.contiguous())
color_weighted = self.schedule(iteration) * recon
if torch.isnan(color_weighted).any():
raise ValueError("[COLOR] NaN detected in loss")
return dict(color=color_weighted)
class KLLoss(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.schedule = WeightScheduler(boundaries=config.boundaries, values=config.values)
def kl(self, mean, logvar):
_dims = [idx for idx in range(1, mean.ndim)]
var = torch.exp(logvar)
return 0.5 * (torch.pow(mean, 2) + var - 1.0 - logvar)
def forward(self, inputs, output_batch, iteration) -> dict[str, torch.Tensor]:
if "posteriors" not in output_batch: # No KL loss for discrete tokens.
return dict()
mean, logvar = output_batch["posteriors"]
if mean.ndim == 1: # No KL if the mean is a scalar.
return dict()
kl = self.kl(mean, logvar)
kl_weighted = self.schedule(iteration) * kl
if torch.isnan(kl_weighted).any():
raise ValueError("[KL] NaN detected in loss")
return dict(kl=kl_weighted)
class PerceptualLoss(LPIPS):
"""Relevant changes that're internal to us:
- Remove linear projection layers, simply use the raw pre-normalized features.
- Use pyramid-layer weights: [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10.0 / 1.5].
- Accepts pixel-wise masks and modulates the features before norm calculation.
- Implements gram-matrix and correlation losses.
"""
def __init__(self, config):
super(PerceptualLoss, self).__init__(config.checkpoint_activations)
self.net = self.net.eval()
self.gram_enabled = config.gram_enabled
self.corr_enabled = config.corr_enabled
self.layer_weights = list(config.layer_weights)
self.lpips_schedule = WeightScheduler(config.lpips_boundaries, config.lpips_values)
self.gram_schedule = WeightScheduler(config.gram_boundaries, config.gram_values)
self.corr_schedule = WeightScheduler(config.corr_boundaries, config.corr_values)
self.checkpoint_activations = config.checkpoint_activations
def _temporal_gram_matrix(self, x, batch_size=None):
x = batch2time(x, batch_size)
c, t, h, w = x.shape[-4], x.shape[-3], x.shape[-2], x.shape[-1]
reshaped_x = torch.reshape(x, [-1, c, t * h * w])
return torch.matmul(reshaped_x, reshaped_x.transpose(1, 2)) / float(t * h * w)
def _gram_matrix(self, x, batch_size=None):
if batch_size is not None and x.shape[0] != batch_size:
return self._temporal_gram_matrix(x, batch_size)
c, h, w = x.shape[-3], x.shape[-2], x.shape[-1]
reshaped_x = torch.reshape(x, [-1, c, h * w])
return torch.matmul(reshaped_x, reshaped_x.transpose(1, 2)) / float(h * w)
def forward(self, inputs, output_batch, iteration):
output_dict = dict()
reconstructions = output_batch[RECON_KEY]
weights = inputs[MASK_KEY]
input_images = inputs[INPUT_KEY]
if input_images.ndim == 5:
input_images, batch_size = time2batch(input_images)
reconstructions, _ = time2batch(reconstructions)
weights, _ = time2batch(weights)
else:
batch_size = input_images.shape[0]
in0_input, in1_input = (self.scaling_layer(input_images), self.scaling_layer(reconstructions))
outs0, outs1 = self.net(in0_input), self.net(in1_input)
_layer_weights = self.layer_weights
weights_map, res, diffs = {}, {}, {}
for kk in range(len(self.chns)):
weights_map[kk] = torch.nn.functional.interpolate(weights[:, :1, ...], outs0[kk].shape[-2:])
diffs[kk] = weights_map[kk] * torch.abs(outs0[kk] - outs1[kk])
res[kk] = _layer_weights[kk] * diffs[kk].mean([1, 2, 3], keepdim=True)
val = res[0]
for ll in range(1, len(self.chns)):
val += res[ll]
# Scale by number of pixels to match pixel-wise losses.
val = val.expand(-1, input_images.shape[-3], input_images.shape[-2], input_images.shape[-1])
if batch_size != input_images.shape[0]:
val = batch2time(val, batch_size)
if torch.isnan(val).any():
raise ValueError("[LPIPS] NaN detected in loss")
output_dict["lpips"] = self.lpips_schedule(iteration) * val
if self.gram_enabled and self.gram_schedule(iteration) > 0.0:
num_chans = len(self.chns)
grams0 = [self._gram_matrix(weights_map[kk] * outs0[kk], batch_size) for kk in range(num_chans)]
grams1 = [self._gram_matrix(weights_map[kk] * outs1[kk], batch_size) for kk in range(num_chans)]
gram_diffs = [(grams0[kk] - grams1[kk]) ** 2 for kk in range(num_chans)]
grams_res = [_layer_weights[kk] * gram_diffs[kk].mean([1, 2], keepdim=True) for kk in range(num_chans)]
gram_val = grams_res[0]
for ll in range(1, len(self.chns)):
gram_val += grams_res[ll]
# Scale by number of total pixels to match pixel-wise losses.
gram_val = gram_val.unsqueeze(1).expand(
-1, input_images.shape[-3], input_images.shape[-2], input_images.shape[-1]
)
if batch_size != input_images.shape[0]:
gram_val = batch2time(gram_val, batch_size)
if torch.isnan(gram_val).any():
raise ValueError("[GRAM] NaN detected in loss")
output_dict["gram"] = self.gram_schedule(iteration) * gram_val
return output_dict
def torch_compile(self):
"""
This method invokes torch.compile() on this loss
"""
# cuda-graphs crash after 1k iterations
self.net = torch.compile(self.net, dynamic=False)
class FlowLoss(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.schedule = WeightScheduler(config.boundaries, config.values)
self.scale = config.scale
self.dtype = getattr(torch, config.dtype)
self.checkpoint_activations = config.checkpoint_activations
self.enabled = config.enabled
current_device = torch.device(torch.cuda.current_device())
# In order to be able to run model in bf16 we need to change make_coords_grid()
# to allow it to return arbitrary type provided by us in argument
# the line from orginal implementation that caused results to be only fp32 is commented
# Additionally I've changed that function to run on GPU instead of CPU, which results in
# less graph breaks when torch.compile() is used
# This function is copied from
# https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/_utils.py#L22
# commit: b06ea39d5f0adbe949d08257837bda912339e415
def make_coords_grid(
batch_size: int, h: int, w: int, device: torch.device = current_device, dtype: torch.dtype = self.dtype
):
# Original: def make_coords_grid(batch_size: int, h: int, w: int, device: str = "cpu"):
device = torch.device(device)
coords = torch.meshgrid(torch.arange(h, device=device), torch.arange(w, device=device), indexing="ij")
coords = torch.stack(coords[::-1], dim=0).to(dtype)
# Original: coords = torch.stack(coords[::-1], dim=0).float()
return coords[None].repeat(batch_size, 1, 1, 1)
# We also need to specify output dtype of torch.linspace() in index_pyramid()
# method of CorrBlock, otherwise it uses default fp32 dtype as output.
# Additionally I've changed that function to run on GPU instead of CPU, which results in
# less graph breaks when torch.compile() is used
# This function is copied from
# https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py#L394
# commit: b06ea39d5f0adbe949d08257837bda912339e415
def index_pyramid(
self, centroids_coords, dtype: torch.dtype = self.dtype, device: torch.device = current_device
):
# Original: def index_pyramid(self, centroids_coords):
"""Return correlation features by indexing from the pyramid."""
neighborhood_side_len = 2 * self.radius + 1 # see note in __init__ about out_channels
di = torch.linspace(-self.radius, self.radius, neighborhood_side_len, dtype=dtype, device=device)
dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len, dtype=dtype, device=device)
# Original: di = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
# Original: dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
delta = torch.stack(torch.meshgrid(di, dj, indexing="ij"), dim=-1).to(centroids_coords.device)
delta = delta.view(1, neighborhood_side_len, neighborhood_side_len, 2)
batch_size, _, h, w = centroids_coords.shape # _ = 2
centroids_coords = centroids_coords.permute(0, 2, 3, 1).reshape(batch_size * h * w, 1, 1, 2)
indexed_pyramid = []
for corr_volume in self.corr_pyramid:
sampling_coords = centroids_coords + delta # end shape is (batch_size * h * w, side_len, side_len, 2)
indexed_corr_volume = optical_flow.raft.grid_sample(
corr_volume, sampling_coords, align_corners=True, mode="bilinear"
).view(batch_size, h, w, -1)
indexed_pyramid.append(indexed_corr_volume)
centroids_coords = centroids_coords / 2
corr_features = torch.cat(indexed_pyramid, dim=-1).permute(0, 3, 1, 2).contiguous()
expected_output_shape = (batch_size, self.out_channels, h, w)
if corr_features.shape != expected_output_shape:
raise ValueError(
f"Output shape of index pyramid is incorrect. Should be {expected_output_shape}, got {corr_features.shape}"
)
return corr_features
optical_flow.raft.make_coords_grid = make_coords_grid
optical_flow.raft.CorrBlock.index_pyramid = index_pyramid
flow_model = optical_flow.raft_large(pretrained=True, progress=False)
flow_model.requires_grad_(False)
flow_model.eval()
flow_model = flow_model.to(self.dtype)
self.flow_model = flow_model
def _run_model(self, input1: torch.Tensor, input2: torch.Tensor) -> torch.Tensor:
"""Runs flow_model in the forward mode on explicit dtype=float32.
Args:
input1: First video frames batch, layout (T, C, H, W), bfloat16.
input2: Next video frames batch, layout (T, C, H, W), bfloat16.
Returns:
Forward optical flow, (T, 2, H, W), bfloat16.
"""
input_dtype = input1.dtype
flow_output = self.flow_model.to(self.dtype)(input1.to(self.dtype), input2.to(self.dtype))[-1]
return flow_output.to(input_dtype)
def _run_model_fwd(self, input_video: torch.Tensor) -> torch.Tensor:
"""Runs foward flow on a batch of videos, one batch at a time.
Args:
input_video: The input batch of videos, layout (B, T, C, H, W).
Returns:
Forward optical flow, layout (B, 2, T-1, H, W).
"""
output_list = list()
for fwd_input_frames in input_video:
fwd_input_frames = fwd_input_frames.transpose(1, 0)
fwd_flow_output = self._run_model(fwd_input_frames[:-1], fwd_input_frames[1:])
output_list.append(fwd_flow_output.transpose(1, 0))
return torch.stack(output_list, dim=0)
def _bidirectional_flow(self, input_video: torch.Tensor) -> torch.Tensor:
"""The bidirectional optical flow on a batch of videos.
The forward and backward flows are averaged to get the bidirectional flow.
To reduce memory pressure, the input video is scaled down by a factor of `self.scale`,
and rescaled back to match other pixel-wise losses.
Args:
input_video: The input batch of videos, layout (B, T, C, H, W).
Returns:
Biderectinoal flow, layout (B, 2, T-1, H, W).
"""
# scale down the input video to reduce memory pressure.
t, h, w = input_video.shape[-3:]
input_video_scaled = F.interpolate(input_video, (t, h // self.scale, w // self.scale), mode="trilinear")
# forward flow.
if self.checkpoint_activations:
fwd_flow_output = checkpoint.checkpoint(self._run_model_fwd, input_video_scaled, use_reentrant=False)
else:
fwd_flow_output = self._run_model_fwd(input_video_scaled)
# backward flow.
input_video_scaled = input_video_scaled.flip([2])
if self.checkpoint_activations:
bwd_flow_output = checkpoint.checkpoint(self._run_model_fwd, input_video_scaled, use_reentrant=False)
else:
bwd_flow_output = self._run_model_fwd(input_video_scaled)
bwd_flow_output = bwd_flow_output.flip([2])
# bidirectional flow, concat fwd and bwd along temporal axis.
flow_input = torch.cat([fwd_flow_output, bwd_flow_output], dim=2)
return self.scale * F.interpolate(flow_input, (2 * (t - 1), h, w), mode="trilinear")
def forward(
self, inputs: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor], iteration: int
) -> dict[str, torch.Tensor]:
input_images = inputs[INPUT_KEY]
if input_images.ndim == 4 or input_images.shape[2] == 1:
return dict()
if not self.enabled or self.schedule(iteration) == 0.0:
return dict()
# Biderectional flow (B, 2, 2*(T-1), H, W)
flow_input = self._bidirectional_flow(input_images)
flow_recon = self._bidirectional_flow(output_batch[RECON_KEY])
# L1 loss on the flow. (B, 1, 2*(T-1), H, W)
flow_loss = torch.abs(flow_input - flow_recon).mean(dim=1, keepdim=True)
flow_loss_weighted = self.schedule(iteration) * flow_loss
if torch.isnan(flow_loss_weighted).any():
raise ValueError("[FLOW] NaN detected in loss")
return dict(flow=flow_loss_weighted)
def torch_compile(self):
"""
This method invokes torch.compile() on this loss
"""
self.flow_model = torch.compile(self.flow_model, dynamic=False)
class VideoConsistencyLoss(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.schedule = WeightScheduler(boundaries=config.boundaries, values=config.values)
self.enabled = config.enabled
self.num_frames = config.num_frames
self.step = config.step
self.num_windows = None
def shuffle(self, inputs: torch.Tensor) -> torch.Tensor:
"""
For input video of [B, 3, T, H, W], this function will reshape the video to
the shape of [B*(T-num_frames+1)//step, 3, num_frames, H, W] using a sliding window
This function is used to compute the temporal consistency between overlapped frames
to enable temporal consistency
"""
assert len(inputs.shape) == 5, f"inputs shape should be [B, 3, T, H, W]. currently {inputs.shape}"
B, C, T, H, W = inputs.shape
assert T >= self.num_frames, f"inputs {T} should be greater than {self.num_frames}"
# [B, C, num_windows, H, W, num_frames]
outputs = inputs.unfold(dimension=2, size=self.num_frames, step=self.step)
self.num_windows = outputs.shape[2]
outputs = einops.rearrange(outputs, "b c m h w n -> (b m) c n h w")
return outputs
def forward(self, inputs, output_batch, iteration) -> dict[str, torch.Tensor]:
if not self.enabled or self.num_windows is None:
return dict()
if self.schedule(iteration) == 0.0:
return dict()
# reshape output_batch to compute loss between overlapped frames
reconstructions = output_batch[RECON_CONSISTENCY_KEY]
B, C, T, H, W = reconstructions.shape
assert T == self.num_frames, f"reconstruction shape invalid (shape[2] should be {self.num_frames})"
assert (
B % self.num_windows == 0
), f"reconstruction shape invalid (shape[0]={B} not dividable by {self.num_windows})"
B = B // self.num_windows
videos = reconstructions.view(B, self.num_windows, C, self.num_frames, H, W)
# Compute the L1 distance between overlapped frames for all windows at once
diff = torch.mean(torch.abs(videos[:, :-1, :, self.step :, :, :] - videos[:, 1:, :, : -self.step, :, :]))
diff_weighted = self.schedule(iteration) * diff
if LATENT_KEY not in output_batch:
return dict(frame_consistency=diff_weighted)
B_latent, C_latent, T_latent, H_latent, W_latent = output_batch["latent"].shape
assert B_latent % self.num_windows == 0, f"latent batches should be divisible by {self.num_windows}"
latents = output_batch[LATENT_KEY].view(
B_latent // self.num_windows, self.num_windows, C_latent, T_latent, H_latent, W_latent
)
temporal_rate = self.num_frames // T_latent
spatial_rate = (H // H_latent) * (W // W_latent)
step_latent = self.step // temporal_rate
latent_diff = torch.mean(
torch.abs(latents[:, :-1, :, step_latent:, :, :] - latents[:, 1:, :, :-step_latent, :, :])
)
latent_diff_weighted = self.schedule(iteration) * latent_diff * (C * temporal_rate * spatial_rate) / (C_latent)
return dict(frame_consistency=diff_weighted, latent_consistency=latent_diff_weighted)
def unshuffle(self, inputs: torch.Tensor) -> torch.Tensor:
"""
For input video of [B*num_windows, 3, num_frames, H, W], this function will
undo the shuffle to a tensor of shape [B, 3, T, H, W]
"""
assert len(inputs.shape) == 5, f"inputs shape should be [B, 3, T, H, W]. currently {inputs.shape}"
B, C, T, H, W = inputs.shape
assert T == self.num_frames, f"inputs shape invalid (shape[2] should be {self.num_frames})"
assert B % self.num_windows == 0, f"inputs shape invalid (shape[0]={B} not dividable by {self.num_windows})"
B = B // self.num_windows
videos = inputs.view(B, self.num_windows, C, self.num_frames, H, W)
T = self.num_frames + (self.num_windows - 1) * self.step
current_device = torch.device(torch.cuda.current_device())
outputs = torch.zeros(B, C, T, H, W).to(inputs.dtype).to(current_device)
counter = torch.zeros_like(outputs)
for i in range(self.num_windows):
outputs[:, :, i * self.step : i * self.step + self.num_frames, :, :] += videos[:, i, :, :, :, :]
counter[:, :, i * self.step : i * self.step + self.num_frames, :, :] += 1
outputs = outputs / counter
return outputs
|