File size: 22,906 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The combined loss functions for continuous-space tokenizers training."""
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import torchvision.models.optical_flow as optical_flow

from cosmos_predict1.tokenizer.modules.utils import batch2time, time2batch
from cosmos_predict1.tokenizer.training.datasets.utils import INPUT_KEY, LATENT_KEY, MASK_KEY, RECON_KEY
from cosmos_predict1.tokenizer.training.losses import ReduceMode
from cosmos_predict1.tokenizer.training.losses.lpips import LPIPS
from cosmos_predict1.utils.lazy_config import instantiate

_VALID_LOSS_NAMES = ["color", "perceptual", "flow", "kl", "video_consistency"]
VIDEO_CONSISTENCY_LOSS = "video_consistency"
RECON_CONSISTENCY_KEY = f"{RECON_KEY}_consistency"


class TokenizerLoss(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.config = config
        _reduce = ReduceMode(config.reduce.upper()) if hasattr(config, "reduce") else None
        self.reduce = _reduce.function
        self.loss_modules = nn.ModuleDict()
        for key in _VALID_LOSS_NAMES:
            self.loss_modules[key] = instantiate(getattr(config, key)) if hasattr(config, key) else NullLoss()

    def forward(self, inputs, output_batch, iteration) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
        loss = dict()
        total_loss = 0.0

        inputs[MASK_KEY] = torch.ones_like(inputs[INPUT_KEY])
        # Calculates reconstruction losses (`total_loss`).
        for key, module in self.loss_modules.items():
            curr_loss = module(inputs, output_batch, iteration)
            loss.update({k: torch.mean(v) for k, v in curr_loss.items()})
            total_loss += sum([self.reduce(v) if (v.dim() > 0) else v for v in curr_loss.values()])

        loss.update({k: torch.mean(v) for k, v in curr_loss.items()})

        # Computes the overall loss as sum of the reconstruction losses and the generator loss.
        total_loss += sum([self.reduce(v) if (v.dim() > 0) else v for v in curr_loss.values()])
        return dict(loss=loss), total_loss


class WeightScheduler(torch.nn.Module):
    def __init__(self, boundaries, values):
        super().__init__()
        self.boundaries = list(boundaries)
        self.values = list(values)

    def forward(self, iteration):
        for boundary, value in zip(self.boundaries, self.values):
            if iteration < boundary:
                return value
        return self.values[-1]


class NullLoss(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, inputs, output_batch, iteration) -> dict[dict, torch.Tensor]:
        return dict()


class ColorLoss(torch.nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.schedule = WeightScheduler(boundaries=config.boundaries, values=config.values)

    def forward(self, inputs, output_batch, iteration) -> dict[str, torch.Tensor]:
        reconstructions = output_batch[RECON_KEY]
        weights = inputs[MASK_KEY]
        recon = weights * torch.abs(inputs[INPUT_KEY].contiguous() - reconstructions.contiguous())
        color_weighted = self.schedule(iteration) * recon
        if torch.isnan(color_weighted).any():
            raise ValueError("[COLOR] NaN detected in loss")
        return dict(color=color_weighted)


class KLLoss(torch.nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.schedule = WeightScheduler(boundaries=config.boundaries, values=config.values)

    def kl(self, mean, logvar):
        _dims = [idx for idx in range(1, mean.ndim)]
        var = torch.exp(logvar)
        return 0.5 * (torch.pow(mean, 2) + var - 1.0 - logvar)

    def forward(self, inputs, output_batch, iteration) -> dict[str, torch.Tensor]:
        if "posteriors" not in output_batch:  # No KL loss for discrete tokens.
            return dict()
        mean, logvar = output_batch["posteriors"]
        if mean.ndim == 1:  # No KL if the mean is a scalar.
            return dict()
        kl = self.kl(mean, logvar)
        kl_weighted = self.schedule(iteration) * kl
        if torch.isnan(kl_weighted).any():
            raise ValueError("[KL] NaN detected in loss")
        return dict(kl=kl_weighted)


class PerceptualLoss(LPIPS):
    """Relevant changes that're internal to us:

    - Remove linear projection layers, simply use the raw pre-normalized features.
    - Use pyramid-layer weights: [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10.0 / 1.5].
    - Accepts pixel-wise masks and modulates the features before norm calculation.
    - Implements gram-matrix and correlation losses.
    """

    def __init__(self, config):
        super(PerceptualLoss, self).__init__(config.checkpoint_activations)
        self.net = self.net.eval()
        self.gram_enabled = config.gram_enabled
        self.corr_enabled = config.corr_enabled
        self.layer_weights = list(config.layer_weights)
        self.lpips_schedule = WeightScheduler(config.lpips_boundaries, config.lpips_values)
        self.gram_schedule = WeightScheduler(config.gram_boundaries, config.gram_values)
        self.corr_schedule = WeightScheduler(config.corr_boundaries, config.corr_values)
        self.checkpoint_activations = config.checkpoint_activations

    def _temporal_gram_matrix(self, x, batch_size=None):
        x = batch2time(x, batch_size)
        c, t, h, w = x.shape[-4], x.shape[-3], x.shape[-2], x.shape[-1]
        reshaped_x = torch.reshape(x, [-1, c, t * h * w])
        return torch.matmul(reshaped_x, reshaped_x.transpose(1, 2)) / float(t * h * w)

    def _gram_matrix(self, x, batch_size=None):
        if batch_size is not None and x.shape[0] != batch_size:
            return self._temporal_gram_matrix(x, batch_size)
        c, h, w = x.shape[-3], x.shape[-2], x.shape[-1]
        reshaped_x = torch.reshape(x, [-1, c, h * w])
        return torch.matmul(reshaped_x, reshaped_x.transpose(1, 2)) / float(h * w)

    def forward(self, inputs, output_batch, iteration):
        output_dict = dict()
        reconstructions = output_batch[RECON_KEY]
        weights = inputs[MASK_KEY]
        input_images = inputs[INPUT_KEY]

        if input_images.ndim == 5:
            input_images, batch_size = time2batch(input_images)
            reconstructions, _ = time2batch(reconstructions)
            weights, _ = time2batch(weights)
        else:
            batch_size = input_images.shape[0]

        in0_input, in1_input = (self.scaling_layer(input_images), self.scaling_layer(reconstructions))
        outs0, outs1 = self.net(in0_input), self.net(in1_input)

        _layer_weights = self.layer_weights
        weights_map, res, diffs = {}, {}, {}
        for kk in range(len(self.chns)):
            weights_map[kk] = torch.nn.functional.interpolate(weights[:, :1, ...], outs0[kk].shape[-2:])
            diffs[kk] = weights_map[kk] * torch.abs(outs0[kk] - outs1[kk])
            res[kk] = _layer_weights[kk] * diffs[kk].mean([1, 2, 3], keepdim=True)

        val = res[0]
        for ll in range(1, len(self.chns)):
            val += res[ll]
        # Scale by number of pixels to match pixel-wise losses.
        val = val.expand(-1, input_images.shape[-3], input_images.shape[-2], input_images.shape[-1])
        if batch_size != input_images.shape[0]:
            val = batch2time(val, batch_size)
        if torch.isnan(val).any():
            raise ValueError("[LPIPS] NaN detected in loss")
        output_dict["lpips"] = self.lpips_schedule(iteration) * val

        if self.gram_enabled and self.gram_schedule(iteration) > 0.0:
            num_chans = len(self.chns)
            grams0 = [self._gram_matrix(weights_map[kk] * outs0[kk], batch_size) for kk in range(num_chans)]
            grams1 = [self._gram_matrix(weights_map[kk] * outs1[kk], batch_size) for kk in range(num_chans)]
            gram_diffs = [(grams0[kk] - grams1[kk]) ** 2 for kk in range(num_chans)]
            grams_res = [_layer_weights[kk] * gram_diffs[kk].mean([1, 2], keepdim=True) for kk in range(num_chans)]
            gram_val = grams_res[0]
            for ll in range(1, len(self.chns)):
                gram_val += grams_res[ll]

            # Scale by number of total pixels to match pixel-wise losses.
            gram_val = gram_val.unsqueeze(1).expand(
                -1, input_images.shape[-3], input_images.shape[-2], input_images.shape[-1]
            )
            if batch_size != input_images.shape[0]:
                gram_val = batch2time(gram_val, batch_size)
            if torch.isnan(gram_val).any():
                raise ValueError("[GRAM] NaN detected in loss")
            output_dict["gram"] = self.gram_schedule(iteration) * gram_val
        return output_dict

    def torch_compile(self):
        """
        This method invokes torch.compile() on this loss
        """
        # cuda-graphs crash after 1k iterations
        self.net = torch.compile(self.net, dynamic=False)


class FlowLoss(torch.nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.schedule = WeightScheduler(config.boundaries, config.values)
        self.scale = config.scale
        self.dtype = getattr(torch, config.dtype)
        self.checkpoint_activations = config.checkpoint_activations
        self.enabled = config.enabled

        current_device = torch.device(torch.cuda.current_device())

        # In order to be able to run model in bf16 we need to change make_coords_grid()
        # to allow it to return arbitrary type provided by us in argument
        # the line from orginal implementation that caused results to be only fp32 is commented
        # Additionally I've changed that function to run on GPU instead of CPU, which results in
        # less graph breaks when torch.compile() is used
        # This function is copied from
        # https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/_utils.py#L22
        # commit: b06ea39d5f0adbe949d08257837bda912339e415
        def make_coords_grid(
            batch_size: int, h: int, w: int, device: torch.device = current_device, dtype: torch.dtype = self.dtype
        ):
            # Original: def make_coords_grid(batch_size: int, h: int, w: int, device: str = "cpu"):
            device = torch.device(device)
            coords = torch.meshgrid(torch.arange(h, device=device), torch.arange(w, device=device), indexing="ij")
            coords = torch.stack(coords[::-1], dim=0).to(dtype)
            # Original: coords = torch.stack(coords[::-1], dim=0).float()
            return coords[None].repeat(batch_size, 1, 1, 1)

        # We also need to specify output dtype of torch.linspace() in index_pyramid()
        # method of CorrBlock, otherwise it uses default fp32 dtype as output.
        # Additionally I've changed that function to run on GPU instead of CPU, which results in
        # less graph breaks when torch.compile() is used
        # This function is copied from
        # https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py#L394
        # commit: b06ea39d5f0adbe949d08257837bda912339e415
        def index_pyramid(
            self, centroids_coords, dtype: torch.dtype = self.dtype, device: torch.device = current_device
        ):
            # Original: def index_pyramid(self, centroids_coords):
            """Return correlation features by indexing from the pyramid."""
            neighborhood_side_len = 2 * self.radius + 1  # see note in __init__ about out_channels
            di = torch.linspace(-self.radius, self.radius, neighborhood_side_len, dtype=dtype, device=device)
            dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len, dtype=dtype, device=device)
            # Original: di = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
            # Original: dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len)
            delta = torch.stack(torch.meshgrid(di, dj, indexing="ij"), dim=-1).to(centroids_coords.device)
            delta = delta.view(1, neighborhood_side_len, neighborhood_side_len, 2)

            batch_size, _, h, w = centroids_coords.shape  # _ = 2
            centroids_coords = centroids_coords.permute(0, 2, 3, 1).reshape(batch_size * h * w, 1, 1, 2)

            indexed_pyramid = []
            for corr_volume in self.corr_pyramid:
                sampling_coords = centroids_coords + delta  # end shape is (batch_size * h * w, side_len, side_len, 2)
                indexed_corr_volume = optical_flow.raft.grid_sample(
                    corr_volume, sampling_coords, align_corners=True, mode="bilinear"
                ).view(batch_size, h, w, -1)
                indexed_pyramid.append(indexed_corr_volume)
                centroids_coords = centroids_coords / 2

            corr_features = torch.cat(indexed_pyramid, dim=-1).permute(0, 3, 1, 2).contiguous()

            expected_output_shape = (batch_size, self.out_channels, h, w)
            if corr_features.shape != expected_output_shape:
                raise ValueError(
                    f"Output shape of index pyramid is incorrect. Should be {expected_output_shape}, got {corr_features.shape}"
                )

            return corr_features

        optical_flow.raft.make_coords_grid = make_coords_grid
        optical_flow.raft.CorrBlock.index_pyramid = index_pyramid

        flow_model = optical_flow.raft_large(pretrained=True, progress=False)
        flow_model.requires_grad_(False)
        flow_model.eval()
        flow_model = flow_model.to(self.dtype)

        self.flow_model = flow_model

    def _run_model(self, input1: torch.Tensor, input2: torch.Tensor) -> torch.Tensor:
        """Runs flow_model in the forward mode on explicit dtype=float32.

        Args:
            input1: First video frames batch, layout (T, C, H, W), bfloat16.
            input2: Next video frames batch, layout (T, C, H, W), bfloat16.

        Returns:
            Forward optical flow, (T, 2, H, W), bfloat16.
        """
        input_dtype = input1.dtype
        flow_output = self.flow_model.to(self.dtype)(input1.to(self.dtype), input2.to(self.dtype))[-1]
        return flow_output.to(input_dtype)

    def _run_model_fwd(self, input_video: torch.Tensor) -> torch.Tensor:
        """Runs foward flow on a batch of videos, one batch at a time.
        Args:
            input_video: The input batch of videos, layout (B, T, C, H, W).

        Returns:
            Forward optical flow, layout (B, 2, T-1, H, W).
        """
        output_list = list()
        for fwd_input_frames in input_video:
            fwd_input_frames = fwd_input_frames.transpose(1, 0)
            fwd_flow_output = self._run_model(fwd_input_frames[:-1], fwd_input_frames[1:])
            output_list.append(fwd_flow_output.transpose(1, 0))
        return torch.stack(output_list, dim=0)

    def _bidirectional_flow(self, input_video: torch.Tensor) -> torch.Tensor:
        """The bidirectional optical flow on a batch of videos.

        The forward and backward flows are averaged to get the bidirectional flow.
        To reduce memory pressure, the input video is scaled down by a factor of `self.scale`,
        and rescaled back to match other pixel-wise losses.

        Args:
            input_video: The input batch of videos, layout (B, T, C, H, W).

        Returns:
            Biderectinoal flow, layout (B, 2, T-1, H, W).
        """
        # scale down the input video to reduce memory pressure.
        t, h, w = input_video.shape[-3:]
        input_video_scaled = F.interpolate(input_video, (t, h // self.scale, w // self.scale), mode="trilinear")

        # forward flow.
        if self.checkpoint_activations:
            fwd_flow_output = checkpoint.checkpoint(self._run_model_fwd, input_video_scaled, use_reentrant=False)
        else:
            fwd_flow_output = self._run_model_fwd(input_video_scaled)

        # backward flow.
        input_video_scaled = input_video_scaled.flip([2])
        if self.checkpoint_activations:
            bwd_flow_output = checkpoint.checkpoint(self._run_model_fwd, input_video_scaled, use_reentrant=False)
        else:
            bwd_flow_output = self._run_model_fwd(input_video_scaled)
        bwd_flow_output = bwd_flow_output.flip([2])

        # bidirectional flow, concat fwd and bwd along temporal axis.
        flow_input = torch.cat([fwd_flow_output, bwd_flow_output], dim=2)
        return self.scale * F.interpolate(flow_input, (2 * (t - 1), h, w), mode="trilinear")

    def forward(
        self, inputs: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor], iteration: int
    ) -> dict[str, torch.Tensor]:
        input_images = inputs[INPUT_KEY]
        if input_images.ndim == 4 or input_images.shape[2] == 1:
            return dict()
        if not self.enabled or self.schedule(iteration) == 0.0:
            return dict()

        # Biderectional flow (B, 2, 2*(T-1), H, W)
        flow_input = self._bidirectional_flow(input_images)
        flow_recon = self._bidirectional_flow(output_batch[RECON_KEY])

        # L1 loss on the flow. (B, 1, 2*(T-1), H, W)
        flow_loss = torch.abs(flow_input - flow_recon).mean(dim=1, keepdim=True)

        flow_loss_weighted = self.schedule(iteration) * flow_loss
        if torch.isnan(flow_loss_weighted).any():
            raise ValueError("[FLOW] NaN detected in loss")
        return dict(flow=flow_loss_weighted)

    def torch_compile(self):
        """
        This method invokes torch.compile() on this loss
        """
        self.flow_model = torch.compile(self.flow_model, dynamic=False)


class VideoConsistencyLoss(torch.nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.schedule = WeightScheduler(boundaries=config.boundaries, values=config.values)
        self.enabled = config.enabled
        self.num_frames = config.num_frames
        self.step = config.step
        self.num_windows = None

    def shuffle(self, inputs: torch.Tensor) -> torch.Tensor:
        """
        For input video of [B, 3, T, H, W], this function will reshape the video to
        the shape of [B*(T-num_frames+1)//step, 3, num_frames, H, W] using a sliding window
        This function is used to compute the temporal consistency between overlapped frames
        to enable temporal consistency
        """
        assert len(inputs.shape) == 5, f"inputs shape should be [B, 3, T, H, W]. currently {inputs.shape}"
        B, C, T, H, W = inputs.shape
        assert T >= self.num_frames, f"inputs {T} should be greater than {self.num_frames}"

        # [B, C, num_windows, H, W, num_frames]
        outputs = inputs.unfold(dimension=2, size=self.num_frames, step=self.step)
        self.num_windows = outputs.shape[2]
        outputs = einops.rearrange(outputs, "b c m h w n -> (b m) c n h w")

        return outputs

    def forward(self, inputs, output_batch, iteration) -> dict[str, torch.Tensor]:
        if not self.enabled or self.num_windows is None:
            return dict()
        if self.schedule(iteration) == 0.0:
            return dict()
        # reshape output_batch to compute loss between overlapped frames
        reconstructions = output_batch[RECON_CONSISTENCY_KEY]
        B, C, T, H, W = reconstructions.shape

        assert T == self.num_frames, f"reconstruction shape invalid (shape[2] should be {self.num_frames})"
        assert (
            B % self.num_windows == 0
        ), f"reconstruction shape invalid (shape[0]={B} not dividable by {self.num_windows})"

        B = B // self.num_windows
        videos = reconstructions.view(B, self.num_windows, C, self.num_frames, H, W)

        # Compute the L1 distance between overlapped frames for all windows at once
        diff = torch.mean(torch.abs(videos[:, :-1, :, self.step :, :, :] - videos[:, 1:, :, : -self.step, :, :]))
        diff_weighted = self.schedule(iteration) * diff

        if LATENT_KEY not in output_batch:
            return dict(frame_consistency=diff_weighted)

        B_latent, C_latent, T_latent, H_latent, W_latent = output_batch["latent"].shape
        assert B_latent % self.num_windows == 0, f"latent batches should be divisible by {self.num_windows}"

        latents = output_batch[LATENT_KEY].view(
            B_latent // self.num_windows, self.num_windows, C_latent, T_latent, H_latent, W_latent
        )
        temporal_rate = self.num_frames // T_latent
        spatial_rate = (H // H_latent) * (W // W_latent)
        step_latent = self.step // temporal_rate
        latent_diff = torch.mean(
            torch.abs(latents[:, :-1, :, step_latent:, :, :] - latents[:, 1:, :, :-step_latent, :, :])
        )
        latent_diff_weighted = self.schedule(iteration) * latent_diff * (C * temporal_rate * spatial_rate) / (C_latent)
        return dict(frame_consistency=diff_weighted, latent_consistency=latent_diff_weighted)

    def unshuffle(self, inputs: torch.Tensor) -> torch.Tensor:
        """
        For input video of [B*num_windows, 3, num_frames, H, W], this function will
        undo the shuffle to a tensor of shape [B, 3, T, H, W]
        """
        assert len(inputs.shape) == 5, f"inputs shape should be [B, 3, T, H, W]. currently {inputs.shape}"
        B, C, T, H, W = inputs.shape
        assert T == self.num_frames, f"inputs shape invalid (shape[2] should be {self.num_frames})"
        assert B % self.num_windows == 0, f"inputs shape invalid (shape[0]={B} not dividable by {self.num_windows})"

        B = B // self.num_windows
        videos = inputs.view(B, self.num_windows, C, self.num_frames, H, W)

        T = self.num_frames + (self.num_windows - 1) * self.step
        current_device = torch.device(torch.cuda.current_device())
        outputs = torch.zeros(B, C, T, H, W).to(inputs.dtype).to(current_device)
        counter = torch.zeros_like(outputs)
        for i in range(self.num_windows):
            outputs[:, :, i * self.step : i * self.step + self.num_frames, :, :] += videos[:, i, :, :, :, :]
            counter[:, :, i * self.step : i * self.step + self.num_frames, :, :] += 1
        outputs = outputs / counter

        return outputs