File size: 6,687 Bytes
4b029c8 302090a b7df3f6 302090a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import spaces
import os
import gradio as gr
import torch
from PIL import Image
from pathlib import Path
import io
import sys
import traceback
from huggingface_hub import hf_hub_download
# For live system monitoring
import psutil
import GPUtil
# =========================================
# 1. Define Hugging Face dataset + weights
# =========================================
HF_DATASET_REPO = "roll-ai/FloVD-weights"
WEIGHT_FILES = {
"ckpt/FVSM/FloVD_FVSM_Controlnet.pt": "FVSM/FloVD_FVSM_Controlnet.pt",
"ckpt/OMSM/selected_blocks.safetensors": "OMSM/selected_blocks.safetensors",
"ckpt/OMSM/pytorch_lora_weights.safetensors": "OMSM/pytorch_lora_weights.safetensors",
"ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth": "others/depth_anything_v2_metric_hypersim_vitb.pth"
}
print("\nDownloading model...", flush=True)
def download_weights():
print("๐ Downloading model weights via huggingface_hub...")
for hf_path, local_rel_path in WEIGHT_FILES.items():
local_path = Path("ckpt") / local_rel_path
if not local_path.exists():
print(f"๐ฅ Downloading {hf_path}")
hf_hub_download(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
filename=hf_path,
local_dir="./"
)
else:
print(f"โ
Already exists: {local_path}")
download_weights()
def print_ckpt_structure(base_path="ckpt"):
print(f"๐ Listing structure of: {base_path}", flush=True)
for root, dirs, files in os.walk(base_path):
level = root.replace(base_path, '').count(os.sep)
indent = ' ' * 2 * level
print(f"{indent}๐ {os.path.basename(root)}/", flush=True)
sub_indent = ' ' * 2 * (level + 1)
for f in files:
print(f"{sub_indent}๐ {f}", flush=True)
print_ckpt_structure()
# =========================================
# 2. Import FloVD generation pipeline
# =========================================
from inference.flovd_demo import generate_video
def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
log_buffer = io.StringIO()
sys_stdout = sys.stdout
sys.stdout = log_buffer
video_path = None
try:
print("๐ Starting inference...", flush=True)
os.makedirs("input_images", exist_ok=True)
image_path = "input_images/input_image.png"
if not isinstance(image, Image.Image):
image = Image.fromarray(image.astype("uint8"))
image.save(image_path)
print(f"๐ธ Saved input image to {image_path}", flush=True)
generate_video(
prompt=prompt,
image_path=image_path,
fvsm_path="./ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
omsm_path="./ckpt/OMSM",
output_path="./outputs",
num_frames=49,
fps=16,
width=None,
height=None,
seed=42,
guidance_scale=6.0,
dtype=torch.float16,
controlnet_guidance_end=0.4,
use_dynamic_cfg=False,
pose_type=pose_type,
speed=float(speed),
use_flow_integration=use_flow_integration,
cam_pose_name=cam_pose_name,
depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
)
video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
video_path = f"./outputs/generated_videos/{video_name}"
print(f"โ
Inference complete. Video saved to {video_path}")
except Exception:
print("๐ฅ Inference failed with exception:")
traceback.print_exc()
sys.stdout = sys_stdout
logs = log_buffer.getvalue()
log_buffer.close()
return (video_path if video_path and os.path.exists(video_path) else None), logs
# =========================================
# 3. Define FloVD Gradio Interface
# =========================================
with gr.Blocks() as video_tab:
gr.Markdown("## ๐ฅ FloVD: Optical Flow + CogVideoX Video Generation")
prompt = gr.Textbox(label="Prompt", value="A girl riding a bicycle through a park.")
image = gr.Image(label="Input Image")
pose_type = gr.Radio(choices=["manual", "re10k"], value="manual", label="Camera Pose Type")
speed = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.5, label="Camera Speed")
use_flow_integration = gr.Checkbox(label="Use Flow Integration", value=False)
cam_pose_name = gr.Textbox(label="Camera Trajectory", placeholder="e.g., zoom_in, custom_motion, etc.", lines=1)
generate_btn = gr.Button("๐ฌ Generate Video")
video_output = gr.Video(label="Generated Video")
log_output = gr.Textbox(label="Logs", lines=20, interactive=False)
generate_btn.click(
fn=run_inference,
inputs=[prompt, image, pose_type, speed, use_flow_integration, cam_pose_name],
outputs=[video_output, log_output]
)
# =========================================
# 4. Live System Monitor (Fixed)
# =========================================
def get_system_stats():
cpu = psutil.cpu_percent()
mem = psutil.virtual_memory()
disk = psutil.disk_usage('/')
try:
gpus = GPUtil.getGPUs()
gpu_info = "\n".join([
f"GPU {i}: {gpu.name}, {gpu.memoryUsed}MB / {gpu.memoryTotal}MB, Util: {gpu.load * 100:.1f}%"
for i, gpu in enumerate(gpus)
]) if gpus else "No GPU detected"
except Exception as e:
gpu_info = f"GPU info error: {e}"
return (
f"๐ง CPU Usage: {cpu}%\n"
f"๐พ RAM: {mem.used / 1e9:.2f} GB / {mem.total / 1e9:.2f} GB ({mem.percent}%)\n"
f"๐๏ธ Disk: {disk.used / 1e9:.2f} GB / {disk.total / 1e9:.2f} GB ({disk.percent}%)\n"
f"๐ฎ {gpu_info}"
)
with gr.Blocks() as monitor_tab:
gr.Markdown("## ๐ Live System Resource Monitor")
stats_box = gr.Textbox(label="Live Stats", lines=10, interactive=False)
def update_stats():
return gr.update(value=get_system_stats())
stats_btn = gr.Button("๐ Refresh Stats")
stats_btn.click(fn=update_stats, outputs=stats_box)
# =========================================
# 5. Combine Tabs: FloVD + Monitor
# =========================================
with gr.Blocks() as app:
with gr.Tab("๐ฅ Video Generator"):
video_tab.render()
with gr.Tab("๐ System Monitor"):
monitor_tab.render()
# =========================================
# 6. Launch App
# =========================================
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)
|