File size: 6,687 Bytes
4b029c8
302090a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7df3f6
302090a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import spaces
import os
import gradio as gr
import torch
from PIL import Image
from pathlib import Path
import io
import sys
import traceback
from huggingface_hub import hf_hub_download
# For live system monitoring
import psutil
import GPUtil

# =========================================
# 1. Define Hugging Face dataset + weights
# =========================================

HF_DATASET_REPO = "roll-ai/FloVD-weights"

WEIGHT_FILES = {
    "ckpt/FVSM/FloVD_FVSM_Controlnet.pt": "FVSM/FloVD_FVSM_Controlnet.pt",
    "ckpt/OMSM/selected_blocks.safetensors": "OMSM/selected_blocks.safetensors",
    "ckpt/OMSM/pytorch_lora_weights.safetensors": "OMSM/pytorch_lora_weights.safetensors",
    "ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth": "others/depth_anything_v2_metric_hypersim_vitb.pth"
}

print("\nDownloading model...", flush=True)

def download_weights():
    print("๐Ÿ”„ Downloading model weights via huggingface_hub...")
    for hf_path, local_rel_path in WEIGHT_FILES.items():
        local_path = Path("ckpt") / local_rel_path
        if not local_path.exists():
            print(f"๐Ÿ“ฅ Downloading {hf_path}")
            hf_hub_download(
                repo_id=HF_DATASET_REPO,
                repo_type="dataset",
                filename=hf_path,
                local_dir="./"
            )
        else:
            print(f"โœ… Already exists: {local_path}")

download_weights()

def print_ckpt_structure(base_path="ckpt"):
    print(f"๐Ÿ“‚ Listing structure of: {base_path}", flush=True)
    for root, dirs, files in os.walk(base_path):
        level = root.replace(base_path, '').count(os.sep)
        indent = ' ' * 2 * level
        print(f"{indent}๐Ÿ“ {os.path.basename(root)}/", flush=True)
        sub_indent = ' ' * 2 * (level + 1)
        for f in files:
            print(f"{sub_indent}๐Ÿ“„ {f}", flush=True)

print_ckpt_structure()

# =========================================
# 2. Import FloVD generation pipeline
# =========================================

from inference.flovd_demo import generate_video

def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
    log_buffer = io.StringIO()
    sys_stdout = sys.stdout
    sys.stdout = log_buffer

    video_path = None
    try:
        print("๐Ÿš€ Starting inference...", flush=True)
        os.makedirs("input_images", exist_ok=True)
        image_path = "input_images/input_image.png"

        if not isinstance(image, Image.Image):
            image = Image.fromarray(image.astype("uint8"))

        image.save(image_path)
        print(f"๐Ÿ“ธ Saved input image to {image_path}", flush=True)

        generate_video(
            prompt=prompt,
            image_path=image_path,
            fvsm_path="./ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
            omsm_path="./ckpt/OMSM",
            output_path="./outputs",
            num_frames=49,
            fps=16,
            width=None,
            height=None,
            seed=42,
            guidance_scale=6.0,
            dtype=torch.float16,
            controlnet_guidance_end=0.4,
            use_dynamic_cfg=False,
            pose_type=pose_type,
            speed=float(speed),
            use_flow_integration=use_flow_integration,
            cam_pose_name=cam_pose_name,
            depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
        )

        video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
        video_path = f"./outputs/generated_videos/{video_name}"
        print(f"โœ… Inference complete. Video saved to {video_path}")

    except Exception:
        print("๐Ÿ”ฅ Inference failed with exception:")
        traceback.print_exc()

    sys.stdout = sys_stdout
    logs = log_buffer.getvalue()
    log_buffer.close()

    return (video_path if video_path and os.path.exists(video_path) else None), logs


# =========================================
# 3. Define FloVD Gradio Interface
# =========================================
with gr.Blocks() as video_tab:
    gr.Markdown("## ๐ŸŽฅ FloVD: Optical Flow + CogVideoX Video Generation")

    prompt = gr.Textbox(label="Prompt", value="A girl riding a bicycle through a park.")
    image = gr.Image(label="Input Image")
    pose_type = gr.Radio(choices=["manual", "re10k"], value="manual", label="Camera Pose Type")
    speed = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.5, label="Camera Speed")
    use_flow_integration = gr.Checkbox(label="Use Flow Integration", value=False)
    cam_pose_name = gr.Textbox(label="Camera Trajectory", placeholder="e.g., zoom_in, custom_motion, etc.", lines=1)

    generate_btn = gr.Button("๐ŸŽฌ Generate Video")

    video_output = gr.Video(label="Generated Video")
    log_output = gr.Textbox(label="Logs", lines=20, interactive=False)

    generate_btn.click(
        fn=run_inference,
        inputs=[prompt, image, pose_type, speed, use_flow_integration, cam_pose_name],
        outputs=[video_output, log_output]
    )

# =========================================
# 4. Live System Monitor (Fixed)
# =========================================

def get_system_stats():
    cpu = psutil.cpu_percent()
    mem = psutil.virtual_memory()
    disk = psutil.disk_usage('/')
    try:
        gpus = GPUtil.getGPUs()
        gpu_info = "\n".join([
            f"GPU {i}: {gpu.name}, {gpu.memoryUsed}MB / {gpu.memoryTotal}MB, Util: {gpu.load * 100:.1f}%"
            for i, gpu in enumerate(gpus)
        ]) if gpus else "No GPU detected"
    except Exception as e:
        gpu_info = f"GPU info error: {e}"

    return (
        f"๐Ÿง  CPU Usage: {cpu}%\n"
        f"๐Ÿ’พ RAM: {mem.used / 1e9:.2f} GB / {mem.total / 1e9:.2f} GB ({mem.percent}%)\n"
        f"๐Ÿ—„๏ธ Disk: {disk.used / 1e9:.2f} GB / {disk.total / 1e9:.2f} GB ({disk.percent}%)\n"
        f"๐ŸŽฎ {gpu_info}"
    )

with gr.Blocks() as monitor_tab:
    gr.Markdown("## ๐Ÿ“Š Live System Resource Monitor")
    stats_box = gr.Textbox(label="Live Stats", lines=10, interactive=False)

    def update_stats():
        return gr.update(value=get_system_stats())

    stats_btn = gr.Button("๐Ÿ”„ Refresh Stats")
    stats_btn.click(fn=update_stats, outputs=stats_box)

# =========================================
# 5. Combine Tabs: FloVD + Monitor
# =========================================

with gr.Blocks() as app:
    with gr.Tab("๐ŸŽฅ Video Generator"):
        video_tab.render()
    with gr.Tab("๐Ÿ“Š System Monitor"):
        monitor_tab.render()

# =========================================
# 6. Launch App
# =========================================

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)