File size: 11,458 Bytes
767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 767f3bb f42f083 e0df45d f42f083 73d134f f42f083 e0df45d f42f083 e0df45d f42f083 c50efbd f42f083 560f256 f42f083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# import os
# import subprocess
# from datetime import datetime
# from pathlib import Path
# import gradio as gr
# # -----------------------------
# # Setup paths and env
# # -----------------------------
# HF_HOME = "/app/hf_cache"
# os.environ["HF_HOME"] = HF_HOME
# os.environ["TRANSFORMERS_CACHE"] = HF_HOME
# os.makedirs(HF_HOME, exist_ok=True)
# PRETRAINED_DIR = "/app/pretrained"
# os.makedirs(PRETRAINED_DIR, exist_ok=True)
# # -----------------------------
# # Step 1: Optional Model Download
# # -----------------------------
# def download_models():
# expected_model = os.path.join(PRETRAINED_DIR, "RAFT/raft-things.pth")
# if not Path(expected_model).exists():
# print("βοΈ Downloading pretrained models...")
# try:
# subprocess.check_call(["bash", "download/download_models.sh"])
# print("β
Models downloaded.")
# except subprocess.CalledProcessError as e:
# print(f"β Model download failed: {e}")
# else:
# print("β
Pretrained models already exist.")
# download_models()
# # -----------------------------
# # Step 2: Inference Logic
# # -----------------------------
# def run_epic_inference(video_path, caption, motion_type):
# temp_input_path = "/app/temp_input.mp4"
# output_dir = f"/app/output_anchor"
# video_output_path = f"{output_dir}/masked_videos/output.mp4"
# traj_name = motion_type
# traj_txt = f"/app/inference/v2v_data/test/trajs/{traj_name}.txt"
# # Save uploaded video
# if video_path:
# os.system(f"cp '{video_path}' {temp_input_path}")
# command = [
# "python", "/app/inference/v2v_data/inference.py",
# "--video_path", temp_input_path,
# "--stride", "1",
# "--out_dir", output_dir,
# "--radius_scale", "1",
# "--camera", "target",
# "--mask",
# "--target_pose", "0", "30", "-0.6", "0", "0",
# "--traj_txt", traj_txt,
# "--save_name", "output",
# "--mode", "gradual",
# ]
# # Run inference command
# try:
# result = subprocess.run(command, capture_output=True, text=True, check=True)
# print("Getting Anchor Videos run successfully.")
# logs = result.stdout
# except subprocess.CalledProcessError as e:
# logs = f"β Inference failed:\n{e.stderr}"
# return logs, None
# # Locate the output video
# if video_output_path:
# return logs, str(video_output_path)
# else:
# return f"Inference succeeded but no output video found in {output_dir}", None
# def print_output_directory(out_dir):
# result = ""
# for root, dirs, files in os.walk(out_dir):
# level = root.replace(out_dir, '').count(os.sep)
# indent = ' ' * 4 * level
# result += f"{indent}{os.path.basename(root)}/"
# sub_indent = ' ' * 4 * (level + 1)
# for f in files:
# result += f"{sub_indent}{f}\n"
# return result
# def inference(video_path, caption, motion_type):
# logs, video_masked = run_epic_inference(video_path, caption, motion_type)
# MODEL_PATH="/app/pretrained/CogVideoX-5b-I2V"
# ckpt_steps=500
# ckpt_dir="/app/out/EPiC_pretrained"
# ckpt_file=f"checkpoint-{ckpt_steps}.pt"
# ckpt_path=f"{ckpt_dir}/{ckpt_file}"
# video_root_dir= f"/app/output_anchor"
# out_dir=f"/app/output"
# command = [
# "python", "/app/inference/cli_demo_camera_i2v_pcd.py",
# "--video_root_dir", video_root_dir,
# "--base_model_path", MODEL_PATH,
# "--controlnet_model_path", ckpt_path,
# "--output_path", out_dir,
# "--start_camera_idx", "0",
# "--end_camera_idx", "8",
# "--controlnet_weights", "1.0",
# "--controlnet_guidance_start", "0.0",
# "--controlnet_guidance_end", "0.4",
# "--controlnet_input_channels", "3",
# "--controlnet_transformer_num_attn_heads", "4",
# "--controlnet_transformer_attention_head_dim", "64",
# "--controlnet_transformer_out_proj_dim_factor", "64",
# "--controlnet_transformer_out_proj_dim_zero_init",
# "--vae_channels", "16",
# "--num_frames", "49",
# "--controlnet_transformer_num_layers", "8",
# "--infer_with_mask",
# "--pool_style", "max",
# "--seed", "43"
# ]
# # Run the command
# result = subprocess.run(command, capture_output=True, text=True)
# if result.returncode == 0:
# print("Inference completed successfully.")
# else:
# print(f"Error occurred during inference: {result.stderr}")
# # Print output directory contents
# logs = result.stdout
# result = print_output_directory(out_dir)
# return logs+result, str(f"{out_dir}/00000_43_out.mp4")
# # output 43
# # output/ 00000_43_out.mp4
# # 00000_43_reference.mp4
# # 00000_43_out_reference.mp4
# # -----------------------------
# # Step 3: Create Gradio UI
# # -----------------------------
# demo = gr.Interface(
# fn=inference,
# inputs=[
# gr.Video(label="Upload Video (MP4)"),
# gr.Textbox(label="Caption", placeholder="e.g., Amalfi coast with boats"),
# gr.Dropdown(
# choices=["zoom_in", "rotate", "orbit", "pan", "loop1"],
# label="Camera Motion Type",
# value="zoom_in",
# ),
# ],
# outputs=[gr.Textbox(label="Inference Logs"), gr.Video(label="Generated Video")],
# title="π¬ EPiC: Efficient Video Camera Control",
# description="Upload a video, describe the scene, and apply cinematic camera motion using pretrained EPiC models.",
# )
# # -----------------------------
# # Step 4: Launch App
# # -----------------------------
# if __name__ == "__main__":
# demo.launch(server_name="0.0.0.0", server_port=7860)
import os
import subprocess
from datetime import datetime
from pathlib import Path
import gradio as gr
# -----------------------------
# Setup paths and env
# -----------------------------
HF_HOME = "/app/hf_cache"
os.environ["HF_HOME"] = HF_HOME
os.environ["TRANSFORMERS_CACHE"] = HF_HOME
os.makedirs(HF_HOME, exist_ok=True)
PRETRAINED_DIR = "/app/pretrained"
os.makedirs(PRETRAINED_DIR, exist_ok=True)
# -----------------------------
# Step 1: Optional Model Download
# -----------------------------
def download_models():
expected_model = os.path.join(PRETRAINED_DIR, "RAFT/raft-things.pth")
if not Path(expected_model).exists():
print("βοΈ Downloading pretrained models...")
try:
subprocess.check_call(["bash", "download/download_models.sh"])
print("β
Models downloaded.")
except subprocess.CalledProcessError as e:
print(f"β Model download failed: {e}")
else:
print("β
Pretrained models already exist.")
download_models()
# -----------------------------
# Step 2: Inference Logic
# -----------------------------
def run_epic_inference(video_path, num_frames, target_pose, mode):
temp_input_path = "/app/temp_input.mp4"
output_dir = "/app/output_anchor"
video_output_path = f"{output_dir}/masked_videos/output.mp4"
# Save uploaded video
if video_path:
os.system(f"cp '{video_path}' {temp_input_path}")
try:
theta, phi, r, x, y = target_pose.strip().split()
except ValueError:
return f"β Invalid target pose format. Use: ΞΈ Ο r x y", None
logs = f"Running inference with target pose: ΞΈ={theta}, Ο={phi}, r={r}, x={x}, y={y}\n"
command = [
"python", "/app/inference/v2v_data/inference.py",
"--video_path", temp_input_path,
"--stride", "1",
"--out_dir", output_dir,
"--radius_scale", "1",
"--camera", "target",
"--mask",
"--target_pose", theta, phi, r, x, y,
"--video_length", str(num_frames),
"--save_name", "output",
"--mode", mode,
]
try:
result = subprocess.run(command, capture_output=True, text=True, check=True)
logs += result.stdout
except subprocess.CalledProcessError as e:
logs += f"β Inference failed:\n{e.stderr}"
return logs, None
return logs, str(video_output_path) if os.path.exists(video_output_path) else (logs, None)
def print_output_directory(out_dir):
result = ""
for root, dirs, files in os.walk(out_dir):
level = root.replace(out_dir, '').count(os.sep)
indent = ' ' * 4 * level
result += f"{indent}{os.path.basename(root)}/\n"
sub_indent = ' ' * 4 * (level + 1)
for f in files:
result += f"{sub_indent}{f}\n"
return result
def inference(video_path, num_frames, fps, target_pose, mode):
logs, video_masked = run_epic_inference(video_path, num_frames, target_pose, mode)
result_dir = print_output_directory("/app/output_anchor")
MODEL_PATH = "/app/pretrained/CogVideoX-5b-I2V"
ckpt_steps = 500
ckpt_dir = "/app/out/EPiC_pretrained"
ckpt_file = f"checkpoint-{ckpt_steps}.pt"
ckpt_path = f"{ckpt_dir}/{ckpt_file}"
video_root_dir = "/app/output_anchor"
out_dir = "/app/output"
command = [
"python", "/app/inference/cli_demo_camera_i2v_pcd.py",
"--video_root_dir", video_root_dir,
"--base_model_path", MODEL_PATH,
"--controlnet_model_path", ckpt_path,
"--output_path", out_dir,
"--start_camera_idx", "0",
"--end_camera_idx", "8",
"--controlnet_weights", "1.0",
"--controlnet_guidance_start", "0.0",
"--controlnet_guidance_end", "0.4",
"--controlnet_input_channels", "3",
"--controlnet_transformer_num_attn_heads", "4",
"--controlnet_transformer_attention_head_dim", "64",
"--controlnet_transformer_out_proj_dim_factor", "64",
"--controlnet_transformer_out_proj_dim_zero_init",
"--vae_channels", "16",
"--num_frames", str(num_frames),
"--controlnet_transformer_num_layers", "8",
"--infer_with_mask",
"--pool_style", "max",
"--seed", "43"
]
result = subprocess.run(command, capture_output=True, text=True)
logs += "\n" + result.stdout
result_dir = print_output_directory(out_dir)
if result.returncode == 0:
logs += "Inference completed successfully."
else:
logs += f"Error occurred during inference: {result.stderr}"
return logs + result_dir + "Hello! it is successful", str(f"{out_dir}/00000_43_out.mp4")
# -----------------------------
# Step 3: Create Gradio UI
# -----------------------------
demo = gr.Interface(
fn=inference,
inputs=[
gr.Video(label="Upload Video (MP4)"),
gr.Slider(minimum=1, maximum=120, value=50, step=1, label="Number of Frames"),
gr.Slider(minimum=1, maximum=90, value=10, step=1, label="FPS"),
gr.Textbox(label="Target Pose (ΞΈ Ο r x y)", placeholder="e.g., 0 30 -0.6 0 0"),
gr.Dropdown(choices=["gradual", "direct", "bullet"], value="gradual", label="Camera Mode"),
],
outputs=[
gr.Textbox(label="Inference Logs"),
gr.Video(label="Generated Video")
],
title="π¬ EPiC: Efficient Video Camera Control",
description="Upload a video, describe the scene, and apply cinematic camera motion using pretrained EPiC models.",
)
# -----------------------------
# Step 4: Launch App
# -----------------------------
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|