File size: 1,250 Bytes
fe86603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os

os.environ["MPLCONFIGDIR"] = "/tmp"  # Prevent matplotlib config errors
os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"

import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Title and UI
st.set_page_config(page_title="DeepSeek-R1 Chatbot", page_icon="πŸ€–")
st.title("🧠 DeepSeek-R1 CPU Chatbot")
st.caption("Running entirely on CPU using Hugging Face Transformers")


# Load the model and tokenizer
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
    model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
    return tokenizer, model


tokenizer, model = load_model()

# Prompt input
user_input = st.text_area("πŸ“₯ Enter your prompt here:", "Explain what a neural network is.")

if st.button("🧠 Generate Response"):
    with st.spinner("Thinking..."):
        inputs = tokenizer(user_input, return_tensors="pt")
        outputs = model.generate(**inputs, max_new_tokens=100)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)

        st.markdown("### πŸ€– Response:")
        st.write(response)