File size: 11,726 Bytes
79b08ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4899ef1
79b08ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import streamlit as st
import json
import os
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
from openai import OpenAI
import time
from PIL import Image

class IntegratedChatSystem:
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.client = OpenAI(api_key=api_key)
        self.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        self.embedding_dim = 384
        self.index = faiss.IndexFlatIP(self.embedding_dim)
        self.metadata = []
        self.fine_tuned_model = None

   
    def add_image(self, image, context_text: str):
        """Add an image and its context to the retrieval system"""
        try:
            # Generate embedding for the context text
            embedding = self.embedding_model.encode(context_text)
            embedding = np.expand_dims(embedding, axis=0)
            
            # Save image and add to index
            if not os.path.exists('uploaded_images'):
                os.makedirs('uploaded_images')
            
            # Generate unique filename
            filename = f"image_{len(self.metadata)}.jpg"
            image_path = os.path.join('uploaded_images', filename)
            
            # Save image
            image.save(image_path)
            
            # Add to FAISS index
            self.index.add(embedding)
            self.metadata.append({
                "filepath": image_path,
                "context": context_text
            })
            
            return True
        except Exception as e:
            st.error(f"Error adding image: {str(e)}")
            return False

    def search_relevant_images(self, query: str, similarity_threshold: float = 0.7, top_k: int = 3):
        """Search for relevant images based on query"""
        try:
            if self.index.ntotal == 0:
                return []
                
            # Generate embedding for the query
            query_embedding = self.embedding_model.encode(query)
            query_embedding = np.expand_dims(query_embedding, axis=0)
            
            # Search in the index
            distances, indices = self.index.search(query_embedding, min(top_k, self.index.ntotal))
            
            # Filter results based on similarity threshold
            relevant_images = [
                self.metadata[i] for i, distance in zip(indices[0], distances[0])
                if i != -1 and distance >= similarity_threshold
            ]
            
            return relevant_images
        except Exception as e:
            st.error(f"Error searching images: {str(e)}")
            return []

    def generate_qna_pairs(self, text: str):
        """Generate question-answer pairs from text using OpenAI API"""
        try:
            completion = self.client.chat.completions.create(
                model="gpt-3.5-turbo",
                messages=[
                    {"role": "system", "content": "Generate 11 relevant question-answer pairs from the given text. Format each pair as a complete, informative question with its corresponding detailed answer."},
                    {"role": "user", "content": f"Text: {text}"}
                ],
                temperature=0.7
            )
            
            response_text = completion.choices[0].message.content
            qa_pairs = []
            
            pairs = response_text.split('\n\n')
            for pair in pairs:
                if 'Q:' in pair and 'A:' in pair:
                    question = pair.split('A:')[0].replace('Q:', '').strip()
                    answer = pair.split('A:')[1].strip()
                    
                    qa_pairs.append({
                        "messages": [
                            {"role": "system", "content": "You are an assistant chatbot. You should help the user by answering their question."},
                            {"role": "user", "content": question},
                            {"role": "assistant", "content": answer}
                        ]
                    })
            
            return qa_pairs
        except Exception as e:
            st.error(f"Error generating QA pairs: {str(e)}")
            return []

    def create_fine_tuning_job(self, training_file_id):
        try:
            response = self.client.fine_tuning.jobs.create(
                training_file=training_file_id,
                model="gpt-3.5-turbo-0125"
            )
            return response.id
        except Exception as e:
            st.error(f"Error creating fine-tuning job: {str(e)}")
            return None


    def monitor_fine_tuning_job(self, job_id):
        try:
            progress_bar = st.progress(0)
            status_text = st.empty()
            details_text = st.empty()
            
            stages = {
                "validating_files": "Validating training files...",
                "queued": "Job queued - waiting to start...",
                "running": "Training in progress...",
                "succeeded": "Training completed successfully!",
                "failed": "Training failed.",
                "cancelled": "Training was cancelled."
            }
            
            # Approximate progress percentages for each stage
            progress_mapping = {
                "validating_files": 0.1,
                "queued": 0.2,
                "running": 0.6,
                "succeeded": 1.0,
                "failed": 1.0,
                "cancelled": 1.0
            }
            
            last_status = None
            start_time = time.time()
            
            while True:
                job_status = self.client.fine_tuning.jobs.retrieve(job_id)
                current_status = job_status.status
                
                # Update progress bar
                progress_bar.progress(progress_mapping.get(current_status, 0))
                
                # Update status message
                status_message = stages.get(current_status, "Processing...")
                status_text.markdown(f"**Status:** {status_message}")
                
                # Show elapsed time and other details
                elapsed_time = int(time.time() - start_time)
                details_text.markdown(f"""
                    **Details:**
                    - Time elapsed: {elapsed_time // 60}m {elapsed_time % 60}s
                    - Job ID: {job_id}
                    - Current stage: {current_status}
                """)
                
                # Status changed notification
                if current_status != last_status:
                    if current_status == "running":
                        st.info("πŸš€ Model training has begun!")
                    elif current_status == "succeeded":
                        st.success("βœ… Fine-tuning completed successfully!")
                        self.fine_tuned_model = job_status.fine_tuned_model
                        st.balloons()  # Celebration effect
                        # Display model details
                        st.markdown(f"""
                            **Training Completed!**
                            - Model ID: `{self.fine_tuned_model}`
                            - Total training time: {elapsed_time // 60}m {elapsed_time % 60}s
                            - Status: Ready to use
                            
                            You can now use the chat interface to interact with your fine-tuned model!
                        """)
                        return True
                    elif current_status in ["failed", "cancelled"]:
                        st.error(f"❌ Training {current_status}. Please check the OpenAI dashboard for details.")
                        return False
                
                last_status = current_status
                time.sleep(10)
                
        except Exception as e:
            st.error(f"Error monitoring fine-tuning job: {str(e)}")
            return False

# Initialize Streamlit interface
st.title("PDF Fine-tuning and Chat System with Image Retrieval")

# Initialize session state
if 'chat_system' not in st.session_state:
    api_key = ""
    st.session_state.chat_system = IntegratedChatSystem(api_key)

# Sidebar for image upload
with st.sidebar:
    st.header("Image Upload")
    uploaded_image = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
    image_context = st.text_area("Image Context Description")
    
    if uploaded_image and image_context and st.button("Add Image"):
        image = Image.open(uploaded_image)
        if st.session_state.chat_system.add_image(image, image_context):
            st.success("Image added successfully!")

# Main area tabs
tab1, tab2 = st.tabs(["Fine-tuning", "Chat"])

with tab1:
    st.header("Upload and Fine-tune")
    uploaded_file = st.file_uploader("Upload a PDF for Fine-Tuning", type=["pdf"])
    
    if uploaded_file is not None:
        if st.button("Process and Fine-tune"):
            with st.spinner("Processing PDF..."):
                # Extract text from PDF
                reader = PdfReader(uploaded_file)
                text = "\n".join([page.extract_text() for page in reader.pages])
                
                # Show processing steps
                progress_placeholder = st.empty()
                
                # Step 1: Generate QA pairs
                progress_placeholder.text("Step 1/3: Generating QA pairs...")
                qa_pairs = st.session_state.chat_system.generate_qna_pairs(text)
                
                if qa_pairs:
                    # Step 2: Save and upload training file
                    progress_placeholder.text("Step 2/3: Preparing training file...")
                    jsonl_file = "questions_and_answers.jsonl"
                    with open(jsonl_file, 'w') as f:
                        for pair in qa_pairs:
                            json.dump(pair, f)
                            f.write("\n")
                    
                    with open(jsonl_file, "rb") as f:
                        response = st.session_state.chat_system.client.files.create(
                            file=f,
                            purpose="fine-tune"
                        )
                        training_file_id = response.id
                    
                    # Step 3: Start fine-tuning
                    progress_placeholder.text("Step 3/3: Starting fine-tuning process...")
                    job_id = st.session_state.chat_system.create_fine_tuning_job(training_file_id)
                    
                    if job_id:
                        progress_placeholder.empty()  # Clear the step indicator
                        st.info(f"🎯 Fine-tuning job initiated!")
                        st.session_state.chat_system.monitor_fine_tuning_job(job_id)

with tab2:
    st.header("Chat Interface")
    if st.session_state.chat_system.fine_tuned_model:
        st.success(f"Using fine-tuned model: {st.session_state.chat_system.fine_tuned_model}")
    else:
        st.info("Using default model (fine-tuned model not available)")
    
    user_message = st.text_input("Enter your message:")
    if st.button("Send") and user_message:
        result = st.session_state.chat_system.chat(user_message)
        
        st.write("Response:", result["response"])
        
        if result["relevant_images"]:
            st.subheader("Relevant Images:")
            for img_data in result["relevant_images"]:
                if os.path.exists(img_data["filepath"]):
                    image = Image.open(img_data["filepath"])
                    st.image(image, caption=img_data["context"])