Spaces:
Sleeping
Sleeping
File size: 24,022 Bytes
cc8c18c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import streamlit as st
import pandas as pd
import plotly.express as px
from groq import Groq
import json
import time
import re
from concurrent.futures import ThreadPoolExecutor
from io import StringIO
class CustomConversationIntentClassifier:
def __init__(self):
# Define hierarchical intent categories and their patterns
if 'custom_intents' not in st.session_state:
self.intent_hierarchy = {
"A. Communication & Response Intent": {
"Information-Seeking": [
r"what", r"how", r"why", r"when", r"where", r"who",
r"want to know", r"tell me about", r"can you explain"
],
"Clarification": [
r"explain", r"clarify", r"what do you mean", r"repeat",
r"didn't understand", r"could you elaborate"
],
"Agreement": [
r"yes", r"agree", r"makes sense", r"exactly",
r"that's right", r"correct"
],
"Disagreement": [
r"no", r"don't agree", r"incorrect", r"that's wrong",
r"i disagree", r"not correct"
],
"Acknowledgment": [
r"got it", r"i see", r"understood", r"noted",
r"alright", r"okay"
],
"Apology": [
r"sorry", r"apologize", r"my mistake", r"my fault",
r"i apologize", r"regret"
],
"Appreciation": [
r"thank you", r"thanks", r"appreciate", r"grateful",
r"thank you for your help"
],
"Urgency": [
r"asap", r"urgent", r"immediately", r"right away",
r"emergency", r"as soon as possible"
]
},
"B. Decision-Making Intent": {
"Exploration": [
r"consider", r"explore", r"what if", r"options",
r"alternatives", r"possibilities"
],
"Commitment": [
r"decided", r"will do", r"i've made my decision",
r"going to", r"i will", r"definitely"
],
"Indecision": [
r"not sure", r"unsure", r"undecided", r"can't decide",
r"torn between", r"haven't decided"
],
"Delegation": [
r"can you handle", r"take care of", r"assign",
r"please handle", r"can you manage"
],
"Evaluation": [
r"compare", r"evaluate", r"assess", r"weigh",
r"pros and cons", r"better option"
]
},
"C. Emotional & Psychological Intent": {
"Seeking Validation": [
r"am i right", r"is this correct", r"does this make sense",
r"what do you think", r"how did i do"
],
"Seeking Support": [
r"need help", r"support", r"assist", r"guide",
r"can you help", r"struggling with"
],
"Expressing Frustration": [
r"annoying", r"frustrated", r"irritating", r"fed up",
r"this is difficult", r"getting nowhere"
],
"Venting": [
r"just need to", r"off my chest", r"let me tell you",
r"you won't believe", r"so tired of"
],
"Seeking Comfort": [
r"feeling down", r"upset", r"worried", r"anxious",
r"stressed", r"not feeling great"
]
},
"D. Social & Relationship Intent": {
"Social Bonding": [
r"coffee", r"lunch", r"catch up", r"get together",
r"hang out", r"meet up"
],
"Networking": [
r"connect", r"network", r"introduction", r"link up",
r"get in touch", r"reach out"
],
"Collaboration": [
r"work together", r"collaborate", r"team up",
r"join forces", r"partner"
],
"Teaching": [
r"let me show", r"teach", r"explain how",
r"guide you through", r"help you understand"
],
"Testing Boundaries": [
r"be honest", r"frank", r"between us",
r"confidential", r"keep this private"
]
},
"E. Action-Oriented Intent": {
"Requesting Action": [
r"can you", r"please", r"would you", r"need you to",
r"send", r"do this"
],
"Offering Help": [
r"can i help", r"let me help", r"assistance",
r"i can do", r"happy to help"
],
"Providing Feedback": [
r"feedback", r"suggestion", r"think about",
r"my opinion", r"recommend"
],
"Expressing Intent to Quit": [
r"quit", r"give up", r"stop", r"abandon",
r"no longer want", r"discontinue"
],
"Confirming Action": [
r"is this done", r"completed", r"finished",
r"status", r"update"
]
}
}
st.session_state['custom_intents'] = self.intent_hierarchy
else:
self.intent_hierarchy = st.session_state['custom_intents']
def add_intent_category(self, main_category, subcategory, patterns):
if main_category not in self.intent_hierarchy:
self.intent_hierarchy[main_category] = {}
self.intent_hierarchy[main_category][subcategory] = patterns
st.session_state['custom_intents'] = self.intent_hierarchy
def preprocess_text(self, text):
if pd.isna(text):
return ""
text = str(text).lower()
text = re.sub(r'[^\w\s]', ' ', text)
return text
def classify_intent(self, text):
text = self.preprocess_text(text)
results = []
for main_category, subcategories in self.intent_hierarchy.items():
for subcategory, patterns in subcategories.items():
for pattern in patterns:
if re.search(r'\b' + pattern + r'\b', text):
results.append({
'main_category': main_category,
'subcategory': subcategory
})
break
if results and results[-1]['subcategory'] == subcategory:
break
if not results:
return [{'main_category': 'Unclassified', 'subcategory': 'Other'}]
return results
def process_conversation(self, df):
hr_intents = [self.classify_intent(msg) for msg in df['HR']]
employee_intents = [self.classify_intent(msg) for msg in df['Employee']]
results_df = pd.DataFrame({
'HR_Message': df['HR'],
'HR_Main_Category': [intent[0]['main_category'] for intent in hr_intents],
'HR_Subcategory': [intent[0]['subcategory'] for intent in hr_intents],
'Employee_Message': df['Employee'],
'Employee_Main_Category': [intent[0]['main_category'] for intent in employee_intents],
'Employee_Subcategory': [intent[0]['subcategory'] for intent in employee_intents]
})
return results_df
class EnhancedConversationAnalyzer:
def __init__(self, groq_api_key):
self.client = Groq(api_key=groq_api_key)
# System prompt for consistent analysis
self.system_prompt = """You are an expert conversation analyzer focusing on workplace communications.
Analyze conversations for sentiment, psychological aspects, and satisfaction levels.
Always respond with valid JSON containing numerical scores and brief explanations."""
def clean_json_response(self, response_text):
"""Clean and validate JSON response"""
try:
# Try to find JSON content between curly braces
start = response_text.find('{')
end = response_text.rfind('}') + 1
if start != -1 and end != 0:
json_str = response_text[start:end]
return json.loads(json_str)
except:
pass
return self.get_empty_analysis()
def analyze_message(self, message, role):
"""Analyze a single message using Groq LLM"""
if pd.isna(message):
return self.get_empty_analysis()
prompt = f"""Analyze this {role} message and respond ONLY with a JSON object:
Message: "{message}"
Required JSON format:
{{
"sentiment": {{
"compound": <float between -1 and 1>,
"positive": <float between 0 and 1>,
"negative": <float between 0 and 1>
}},
"psychological": {{
"stress": <integer between 0 and 10>,
"confidence": <integer between 0 and 10>,
"frustration": <integer between 0 and 10>
}},
"satisfaction": <integer between 0 and 100>,
"explanation": "<brief analysis, max 50 words>"
}}
Ensure the response is ONLY the JSON object with no additional text."""
try:
completion = self.client.chat.completions.create(
messages=[
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": prompt}
],
model="llama-3.3-70b-versatile",
temperature=0.1,
)
# Get and clean the response
response_text = completion.choices[0].message.content
analysis = self.clean_json_response(response_text)
# Validate and sanitize the values
analysis = self.validate_analysis(analysis)
return analysis
except Exception as e:
st.error(f"Error analyzing message: {str(e)}")
return self.get_empty_analysis()
def validate_analysis(self, analysis):
"""Validate and sanitize analysis values"""
template = self.get_empty_analysis()
try:
# Ensure all required fields exist and have valid values
sentiment = analysis.get('sentiment', {})
template['sentiment']['compound'] = max(-1, min(1, float(sentiment.get('compound', 0))))
template['sentiment']['positive'] = max(0, min(1, float(sentiment.get('positive', 0))))
template['sentiment']['negative'] = max(0, min(1, float(sentiment.get('negative', 0))))
psychological = analysis.get('psychological', {})
template['psychological']['stress'] = max(0, min(10, int(psychological.get('stress', 0))))
template['psychological']['confidence'] = max(0, min(10, int(psychological.get('confidence', 0))))
template['psychological']['frustration'] = max(0, min(10, int(psychological.get('frustration', 0))))
template['satisfaction'] = max(0, min(100, int(analysis.get('satisfaction', 0))))
template['explanation'] = str(analysis.get('explanation', ''))[:50]
return template
except:
return template
def get_empty_analysis(self):
"""Return empty analysis structure"""
return {
"sentiment": {"compound": 0.0, "positive": 0.0, "negative": 0.0},
"psychological": {"stress": 0, "confidence": 0, "frustration": 0},
"satisfaction": 0,
"explanation": "No message to analyze"
}
def process_conversation(self, df):
"""Process conversation with LLM analysis"""
results = []
total_rows = len(df)
progress_bar = st.progress(0)
with ThreadPoolExecutor(max_workers=4) as executor:
for index, row in df.iterrows():
# Update progress
progress = (index + 1) / total_rows
progress_bar.progress(progress)
# Process messages
hr_future = executor.submit(self.analyze_message, row['HR'], 'HR')
emp_future = executor.submit(self.analyze_message, row['Employee'], 'Employee')
hr_analysis = hr_future.result()
emp_analysis = emp_future.result()
results.append({
'HR_Message': row['HR'],
'HR_Sentiment_Compound': hr_analysis['sentiment']['compound'],
'HR_Sentiment_Positive': hr_analysis['sentiment']['positive'],
'HR_Sentiment_Negative': hr_analysis['sentiment']['negative'],
'HR_Satisfaction_Score': hr_analysis['satisfaction'],
'HR_Stress_Level': hr_analysis['psychological']['stress'],
'HR_Confidence_Level': hr_analysis['psychological']['confidence'],
'HR_Frustration_Level': hr_analysis['psychological']['frustration'],
'HR_Analysis': hr_analysis['explanation'],
'Employee_Message': row['Employee'],
'Employee_Sentiment_Compound': emp_analysis['sentiment']['compound'],
'Employee_Sentiment_Positive': emp_analysis['sentiment']['positive'],
'Employee_Sentiment_Negative': emp_analysis['sentiment']['negative'],
'Employee_Satisfaction_Score': emp_analysis['satisfaction'],
'Employee_Stress_Level': emp_analysis['psychological']['stress'],
'Employee_Confidence_Level': emp_analysis['psychological']['confidence'],
'Employee_Frustration_Level': emp_analysis['psychological']['frustration'],
'Employee_Analysis': emp_analysis['explanation']
})
# Add a small delay to avoid rate limits
time.sleep(0.1)
progress_bar.empty()
return pd.DataFrame(results)
def create_intent_distribution_plot(df, role):
main_category_counts = df[f'{role}_Main_Category'].value_counts()
fig = px.bar(
x=main_category_counts.index,
y=main_category_counts.values,
title=f'Intent Distribution for {role}',
labels={'x': 'Intent Category', 'y': 'Count'}
)
return fig
def intent_management_ui():
st.sidebar.header("Custom Intent Management")
# Add new intent category
with st.sidebar.expander("Add New Intent Category"):
main_category = st.text_input("Main Category (e.g., F. Custom Intent)")
subcategory = st.text_input("Subcategory (e.g., Custom Type)")
patterns = st.text_area("Patterns (one per line)")
if st.button("Add Intent"):
if main_category and subcategory and patterns:
pattern_list = [p.strip() for p in patterns.split('\n') if p.strip()]
st.session_state.classifier.add_intent_category(
main_category, subcategory, pattern_list
)
st.success(f"Added new intent: {main_category} - {subcategory}")
# View current intents
with st.sidebar.expander("View Current Intents"):
st.json(st.session_state.classifier.intent_hierarchy)
# Export/Import intents
with st.sidebar.expander("Export/Import Intents"):
if st.button("Export Intents"):
json_str = json.dumps(st.session_state.classifier.intent_hierarchy, indent=2)
st.download_button(
label="Download Intents JSON",
data=json_str,
file_name="custom_intents.json",
mime="application/json"
)
uploaded_json = st.file_uploader("Import Intents JSON", type="json")
if uploaded_json is not None:
try:
new_intents = json.load(uploaded_json)
st.session_state.classifier.intent_hierarchy = new_intents
st.session_state['custom_intents'] = new_intents
st.success("Successfully imported intents")
except Exception as e:
st.error(f"Error importing intents: {str(e)}")
def main():
st.title("Comprehensive Conversation Analyzer")
st.write("Upload a CSV file to analyze conversations using intent classification and sentiment analysis.")
# Initialize intent classifier
if 'classifier' not in st.session_state:
st.session_state.classifier = CustomConversationIntentClassifier()
# Show intent management UI in sidebar
intent_management_ui()
# Groq API key input for sentiment analysis
groq_api_key = st.text_input("Enter your Groq API key for sentiment analysis", type="password")
# File upload
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
if 'HR' not in df.columns or 'Employee' not in df.columns:
st.error("CSV file must contain 'HR' and 'Employee' columns!")
return
st.subheader("Sample of Original Data")
st.dataframe(df.head())
# Store results for later combination
intent_results = None
sentiment_results = None
# Intent Classification
with st.expander("Intent Classification Results"):
with st.spinner("Classifying intents..."):
intent_results = st.session_state.classifier.process_conversation(df)
st.dataframe(intent_results)
st.subheader("Intent Distribution")
hr_plot = create_intent_distribution_plot(intent_results, 'HR')
st.plotly_chart(hr_plot)
emp_plot = create_intent_distribution_plot(intent_results, 'Employee')
st.plotly_chart(emp_plot)
# Download intent results
intent_csv = intent_results.to_csv(index=False)
st.download_button(
label="Download intent classification results as CSV",
data=intent_csv,
file_name="classified_conversations.csv",
mime="text/csv"
)
# Sentiment Analysis
if groq_api_key:
with st.expander("Sentiment Analysis Results"):
analyzer = EnhancedConversationAnalyzer(groq_api_key)
with st.spinner("Analyzing sentiments using AI... This may take a few minutes."):
sentiment_results = analyzer.process_conversation(df)
# Display sentiment summary metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric(
"Average HR Satisfaction",
f"{sentiment_results['HR_Satisfaction_Score'].mean():.1f}%"
)
with col2:
st.metric(
"Average Employee Satisfaction",
f"{sentiment_results['Employee_Satisfaction_Score'].mean():.1f}%"
)
with col3:
st.metric(
"Overall Sentiment",
f"{sentiment_results['Employee_Sentiment_Compound'].mean():.2f}"
)
# Display sentiment visualizations
sentiment_fig = px.line(
sentiment_results,
y=['HR_Sentiment_Compound', 'Employee_Sentiment_Compound'],
title='Sentiment Trends',
labels={'value': 'Sentiment Score', 'index': 'Message Number'}
)
st.plotly_chart(sentiment_fig)
satisfaction_fig = px.line(
sentiment_results,
y=['HR_Satisfaction_Score', 'Employee_Satisfaction_Score'],
title='Satisfaction Score Trends',
labels={'value': 'Satisfaction Score', 'index': 'Message Number'}
)
st.plotly_chart(satisfaction_fig)
# Display detailed sentiment results
st.subheader("Detailed Sentiment Analysis")
st.dataframe(sentiment_results)
# Download sentiment results
sentiment_csv = sentiment_results.to_csv(index=False)
st.download_button(
label="Download sentiment analysis results as CSV",
data=sentiment_csv,
file_name="sentiment_analysis.csv",
mime="text/csv"
)
else:
st.warning("Please enter your Groq API key to perform sentiment analysis.")
# Combined Results Section
if intent_results is not None:
st.subheader("Combined Analysis Results")
if sentiment_results is not None:
# Combine the results
# Keep only one copy of the messages
combined_results = intent_results.copy()
# Add sentiment columns
sentiment_columns = [col for col in sentiment_results.columns
if col not in ['HR_Message', 'Employee_Message']]
for col in sentiment_columns:
combined_results[col] = sentiment_results[col]
st.write("Preview of combined results:")
st.dataframe(combined_results.head())
# Download combined results
combined_csv = combined_results.to_csv(index=False)
st.download_button(
label="Download combined analysis results as CSV",
data=combined_csv,
file_name="combined_analysis.csv",
mime="text/csv",
key="combined_download"
)
else:
st.info("Add your Groq API key and run sentiment analysis to get combined results.")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main() |