File size: 13,827 Bytes
440deef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os

from langchain import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter


def search_index_from_docs(source_chunks, embeddings):
    # print("source chunks: " + str(len(source_chunks)))
    # print("embeddings: " + str(embeddings))
    search_index = FAISS.from_documents(source_chunks, embeddings)
    return search_index


def get_chat_history(inputs) -> str:
    res = []
    for human, ai in inputs:
        res.append(f"Human:{human}\nAI:{ai}")
    return "\n".join(res)


class GraderQA:
    def __init__(self, grader, embeddings):
        self.grader = grader
        self.llm = self.grader.llm
        self.index_file = "vector_stores/canvas-discussions.faiss"
        self.pickle_file = "vector_stores/canvas-discussions.pkl"
        self.rubric_text = grader.rubric_text
        self.search_index = self.get_search_index(embeddings)
        self.chain = self.create_chain(embeddings)
        self.tokens = None
        self.question = None

    def get_search_index(self, embeddings):
        if os.path.isfile(self.pickle_file) and os.path.isfile(self.index_file) and os.path.getsize(
                self.pickle_file) > 0:
            # Load index from pickle file
            search_index = self.load_index(embeddings)
        else:
            search_index = self.create_index(embeddings)
            print("Created index")
        return search_index

    def load_index(self, embeddings):
        # Load index
        db = FAISS.load_local(
            folder_path="vector_stores/",
            index_name="canvas-discussions", embeddings=embeddings,
        )
        print("Loaded index")
        return db

    def create_index(self, embeddings):
        source_chunks = self.create_chunk_documents()
        search_index = search_index_from_docs(source_chunks, embeddings)
        FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
        return search_index

    def create_chunk_documents(self):
        sources = self.fetch_data_for_embeddings()

        splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)

        source_chunks = splitter.split_documents(sources)

        print("chunks: " + str(len(source_chunks)))
        print("sources: " + str(len(sources)))

        return source_chunks

    def fetch_data_for_embeddings(self):
        document_list = self.get_csv_files()
        print("document list: " + str(len(document_list)))
        return document_list

    def get_csv_files(self):
        loader = CSVLoader(file_path=self.grader.csv, source_column="student_name")
        document_list = loader.load()
        return document_list

    def create_chain(self, embeddings):
        if not self.search_index:
            self.search_index = self.load_index(embeddings)

        question_prompt, combine_prompt = self.create_map_reduce_prompt()
        # create agent, 1 chain for summary based question, 2nd chain for semantic retrieval based question

        chain = ConversationalRetrievalChain.from_llm(llm=self.llm, chain_type='map_reduce',
                                                      retriever=self.search_index.as_retriever(search_type='mmr',
                                                                                               search_kwargs={
                                                                                                   'lambda_mult': 1,
                                                                                                   'fetch_k': 50,
                                                                                                   'k': 30}),
                                                      return_source_documents=True,
                                                      verbose=True,
                                                      memory=ConversationBufferMemory(memory_key='chat_history',
                                                                                      return_messages=True,
                                                                                      output_key='answer'),
                                                      condense_question_llm=ChatOpenAI(temperature=0,
                                                                                       model='gpt-3.5-turbo'),
                                                      combine_docs_chain_kwargs={"question_prompt": question_prompt,
                                                                                 "combine_prompt": combine_prompt})
        return chain

    def create_map_reduce_prompt(self):
        system_template = f"""Use the following portion of a long grading results document to answer the question BUT ONLY FOR THE STUDENT MENTIONED. Use the following examples to take guidance on how to answer the question.
        Examples:
        Question: How many students participated in the discussion?
        Answer: This student participated in the discussion./This student did not participate in the discussion.
        Question: What was the average score for the discussion?
        Answer: This student received a score of 10/10 for the discussion.
        Question: How many students received a full score?/How many students did not receive a full score?
        Answer: This student received a full score./This student did not receive a full score.
        Question: How many students lost marks in X category of the rubric?
        Answer: This student lost marks in X category of the rubric./This student did not lose marks in X category of the rubric.
        Question: Give me 3 best responses received for the discussion.
        Answer: This student gave the following responses for the discussion and received a score of 10/10.
        
        
        ______________________
        Grading Result For:
        {{context}}
        ______________________
        Following are the instructions and rubric of the discussion post for reference, used to grade the discussion.
        ----------------
        Instructions and Rubric:
        {self.rubric_text}
        """
        messages = [
            SystemMessagePromptTemplate.from_template(system_template),
            HumanMessagePromptTemplate.from_template("{question}"),
        ]
        CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages)
        system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
        Use the following answers for each student to answer the users question as accurately as possible. 
        You are an expert at basic calculations and answering questions on grading results and can answer the following questions with ease.
        If you don't know the answer, just say that you don't know. Don't try to make up an answer.
        ______________________
        {summaries}"""
        messages = [
            SystemMessagePromptTemplate.from_template(system_template),
            HumanMessagePromptTemplate.from_template("{question}"),
        ]
        CHAT_COMBINE_PROMPT = ChatPromptTemplate.from_messages(messages)
        return CHAT_QUESTION_PROMPT, CHAT_COMBINE_PROMPT

    def create_prompt(self):
        system_template = f"""You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
        You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. 
        Use the following instruction, rubric of the discussion which were used to grade the discussions and refine the answer if needed.  
        ----------------
        {self.rubric_text}
        ----------------
        Use the following pieces of the grading results, score, feedback and summary of student responses to answer the users question as accurately as possible.
        {{context}}"""
        messages = [
            SystemMessagePromptTemplate.from_template(system_template),
            HumanMessagePromptTemplate.from_template("{question}"),
        ]
        return ChatPromptTemplate.from_messages(messages)

    def get_tokens(self):
        total_tokens = 0
        for doc in self.docs:
            chat_prompt = self.prompt.format(context=doc, question=self.question)

            num_tokens = self.llm.get_num_tokens(chat_prompt)
            total_tokens += num_tokens

            # summary = self.llm(summary_prompt)

            # print (f"Summary: {summary.strip()}")
            # print ("\n")
        return total_tokens

    def run_qa_chain(self, question):
        self.question = question
        self.get_tokens()
        answer = self.chain(question)
        return answer

# system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the following questions as best you can.
# You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. Use the following pieces of the grading results and feedback to answer the users question.
# Use the following pieces of context to answer the users question.
# ----------------
# {context}"""
#
# messages = [
#     SystemMessagePromptTemplate.from_template(system_template),
#     HumanMessagePromptTemplate.from_template("{question}"),
# ]
# CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
#
#
# def get_search_index(embeddings):
#     global vectorstore_index
#     if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
#         # Load index from pickle file
#         search_index = load_index(embeddings)
#     else:
#         search_index = create_index(model)
#         print("Created index")
#
#     vectorstore_index = search_index
#     return search_index
#
#
# def create_index(embeddings):
#     source_chunks = create_chunk_documents()
#     search_index = search_index_from_docs(source_chunks, embeddings)
#     # search_index.persist()
#     FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
#     # Save index to pickle file
#     # with open(pickle_file, "wb") as f:
#     #     pickle.dump(search_index, f)
#     return search_index
#
#
# def search_index_from_docs(source_chunks, embeddings):
#     # print("source chunks: " + str(len(source_chunks)))
#     # print("embeddings: " + str(embeddings))
#     search_index = FAISS.from_documents(source_chunks, embeddings)
#     return search_index
#
#
# def get_html_files():
#     loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
#     document_list = loader.load()
#     for document in document_list:
#         document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
#     return document_list
#
#
# def get_text_files():
#     loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
#     document_list = loader.load()
#     return document_list
#
#
# def create_chunk_documents():
#     sources = fetch_data_for_embeddings()
#
#     splitter = RecursiveCharacterTextSplitter.from_language(
#         language=Language.HTML, chunk_size=500, chunk_overlap=0
#     )
#
#     source_chunks = splitter.split_documents(sources)
#
#     print("chunks: " + str(len(source_chunks)))
#     print("sources: " + str(len(sources)))
#
#     return source_chunks
#
#
# def create_chain(question, llm, embeddings):
#     db = load_index(embeddings)
#
#     # Create chain
#     chain = ConversationalRetrievalChain.from_llm(llm, db.as_retriever(search_type='mmr',
#                                                                        search_kwargs={'lambda_mult': 1, 'fetch_k': 50,
#                                                                                       'k': 30}),
#                                                   return_source_documents=True,
#                                                   verbose=True,
#                                                   memory=ConversationSummaryBufferMemory(memory_key='chat_history',
#                                                                                          llm=llm, max_token_limit=40,
#                                                                                          return_messages=True,
#                                                                                          output_key='answer'),
#                                                   get_chat_history=get_chat_history,
#                                                   combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
#
#     result = chain({"question": question})
#
#     sources = []
#     print(result)
#
#     for document in result['source_documents']:
#         sources.append("\n" + str(document.metadata))
#         print(sources)
#
#     source = ',\n'.join(set(sources))
#     return result['answer'] + '\nSOURCES: ' + source
#
#
# def load_index(embeddings):
#     # Load index
#     db = FAISS.load_local(
#         folder_path="vector_stores/",
#         index_name="canvas-discussions", embeddings=embeddings,
#     )
#     return db
#
#
# def get_chat_history(inputs) -> str:
#     res = []
#     for human, ai in inputs:
#         res.append(f"Human:{human}\nAI:{ai}")
#     return "\n".join(res)