File size: 33,811 Bytes
2fe55e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
import math
import random
from typing import Any

import torch
import numpy as np
import collections
from itertools import repeat

from diffusers import (
    DDIMScheduler,
    PNDMScheduler,
    LMSDiscreteScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    UniPCMultistepScheduler,
)

from lama_cleaner.schema import SDSampler
from torch import conv2d, conv_transpose2d


def make_beta_schedule(
    device, schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
):
    if schedule == "linear":
        betas = (
            torch.linspace(
                linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64
            )
            ** 2
        )

    elif schedule == "cosine":
        timesteps = (
            torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
        ).to(device)
        alphas = timesteps / (1 + cosine_s) * np.pi / 2
        alphas = torch.cos(alphas).pow(2).to(device)
        alphas = alphas / alphas[0]
        betas = 1 - alphas[1:] / alphas[:-1]
        betas = np.clip(betas, a_min=0, a_max=0.999)

    elif schedule == "sqrt_linear":
        betas = torch.linspace(
            linear_start, linear_end, n_timestep, dtype=torch.float64
        )
    elif schedule == "sqrt":
        betas = (
            torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
            ** 0.5
        )
    else:
        raise ValueError(f"schedule '{schedule}' unknown.")
    return betas.numpy()


def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
    # select alphas for computing the variance schedule
    alphas = alphacums[ddim_timesteps]
    alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())

    # according the the formula provided in https://arxiv.org/abs/2010.02502
    sigmas = eta * np.sqrt(
        (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
    )
    if verbose:
        print(
            f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
        )
        print(
            f"For the chosen value of eta, which is {eta}, "
            f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
        )
    return sigmas, alphas, alphas_prev


def make_ddim_timesteps(
    ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
):
    if ddim_discr_method == "uniform":
        c = num_ddpm_timesteps // num_ddim_timesteps
        ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
    elif ddim_discr_method == "quad":
        ddim_timesteps = (
            (np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
        ).astype(int)
    else:
        raise NotImplementedError(
            f'There is no ddim discretization method called "{ddim_discr_method}"'
        )

    # assert ddim_timesteps.shape[0] == num_ddim_timesteps
    # add one to get the final alpha values right (the ones from first scale to data during sampling)
    steps_out = ddim_timesteps + 1
    if verbose:
        print(f"Selected timesteps for ddim sampler: {steps_out}")
    return steps_out


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
        shape[0], *((1,) * (len(shape) - 1))
    )
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def timestep_embedding(device, timesteps, dim, max_period=10000, repeat_only=False):
    """
    Create sinusoidal timestep embeddings.
    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period)
        * torch.arange(start=0, end=half, dtype=torch.float32)
        / half
    ).to(device=device)

    args = timesteps[:, None].float() * freqs[None]

    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


###### MAT and FcF #######


def normalize_2nd_moment(x, dim=1):
    return (
        x * (x.square().mean(dim=dim, keepdim=True) + torch.finfo(x.dtype).eps).rsqrt()
    )


class EasyDict(dict):
    """Convenience class that behaves like a dict but allows access with the attribute syntax."""

    def __getattr__(self, name: str) -> Any:
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

    def __setattr__(self, name: str, value: Any) -> None:
        self[name] = value

    def __delattr__(self, name: str) -> None:
        del self[name]


def _bias_act_ref(x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None):
    """Slow reference implementation of `bias_act()` using standard TensorFlow ops."""
    assert isinstance(x, torch.Tensor)
    assert clamp is None or clamp >= 0
    spec = activation_funcs[act]
    alpha = float(alpha if alpha is not None else spec.def_alpha)
    gain = float(gain if gain is not None else spec.def_gain)
    clamp = float(clamp if clamp is not None else -1)

    # Add bias.
    if b is not None:
        assert isinstance(b, torch.Tensor) and b.ndim == 1
        assert 0 <= dim < x.ndim
        assert b.shape[0] == x.shape[dim]
        x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])

    # Evaluate activation function.
    alpha = float(alpha)
    x = spec.func(x, alpha=alpha)

    # Scale by gain.
    gain = float(gain)
    if gain != 1:
        x = x * gain

    # Clamp.
    if clamp >= 0:
        x = x.clamp(-clamp, clamp)  # pylint: disable=invalid-unary-operand-type
    return x


def bias_act(
    x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None, impl="ref"
):
    r"""Fused bias and activation function.

    Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
    and scales the result by `gain`. Each of the steps is optional. In most cases,
    the fused op is considerably more efficient than performing the same calculation
    using standard PyTorch ops. It supports first and second order gradients,
    but not third order gradients.

    Args:
        x:      Input activation tensor. Can be of any shape.
        b:      Bias vector, or `None` to disable. Must be a 1D tensor of the same type
                as `x`. The shape must be known, and it must match the dimension of `x`
                corresponding to `dim`.
        dim:    The dimension in `x` corresponding to the elements of `b`.
                The value of `dim` is ignored if `b` is not specified.
        act:    Name of the activation function to evaluate, or `"linear"` to disable.
                Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
                See `activation_funcs` for a full list. `None` is not allowed.
        alpha:  Shape parameter for the activation function, or `None` to use the default.
        gain:   Scaling factor for the output tensor, or `None` to use default.
                See `activation_funcs` for the default scaling of each activation function.
                If unsure, consider specifying 1.
        clamp:  Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
                the clamping (default).
        impl:   Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).

    Returns:
        Tensor of the same shape and datatype as `x`.
    """
    assert isinstance(x, torch.Tensor)
    assert impl in ["ref", "cuda"]
    return _bias_act_ref(
        x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp
    )


def _get_filter_size(f):
    if f is None:
        return 1, 1

    assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
    fw = f.shape[-1]
    fh = f.shape[0]

    fw = int(fw)
    fh = int(fh)
    assert fw >= 1 and fh >= 1
    return fw, fh


def _get_weight_shape(w):
    shape = [int(sz) for sz in w.shape]
    return shape


def _parse_scaling(scaling):
    if isinstance(scaling, int):
        scaling = [scaling, scaling]
    assert isinstance(scaling, (list, tuple))
    assert all(isinstance(x, int) for x in scaling)
    sx, sy = scaling
    assert sx >= 1 and sy >= 1
    return sx, sy


def _parse_padding(padding):
    if isinstance(padding, int):
        padding = [padding, padding]
    assert isinstance(padding, (list, tuple))
    assert all(isinstance(x, int) for x in padding)
    if len(padding) == 2:
        padx, pady = padding
        padding = [padx, padx, pady, pady]
    padx0, padx1, pady0, pady1 = padding
    return padx0, padx1, pady0, pady1


def setup_filter(
    f,
    device=torch.device("cpu"),
    normalize=True,
    flip_filter=False,
    gain=1,
    separable=None,
):
    r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`.

    Args:
        f:           Torch tensor, numpy array, or python list of the shape
                     `[filter_height, filter_width]` (non-separable),
                     `[filter_taps]` (separable),
                     `[]` (impulse), or
                     `None` (identity).
        device:      Result device (default: cpu).
        normalize:   Normalize the filter so that it retains the magnitude
                     for constant input signal (DC)? (default: True).
        flip_filter: Flip the filter? (default: False).
        gain:        Overall scaling factor for signal magnitude (default: 1).
        separable:   Return a separable filter? (default: select automatically).

    Returns:
        Float32 tensor of the shape
        `[filter_height, filter_width]` (non-separable) or
        `[filter_taps]` (separable).
    """
    # Validate.
    if f is None:
        f = 1
    f = torch.as_tensor(f, dtype=torch.float32)
    assert f.ndim in [0, 1, 2]
    assert f.numel() > 0
    if f.ndim == 0:
        f = f[np.newaxis]

    # Separable?
    if separable is None:
        separable = f.ndim == 1 and f.numel() >= 8
    if f.ndim == 1 and not separable:
        f = f.ger(f)
    assert f.ndim == (1 if separable else 2)

    # Apply normalize, flip, gain, and device.
    if normalize:
        f /= f.sum()
    if flip_filter:
        f = f.flip(list(range(f.ndim)))
    f = f * (gain ** (f.ndim / 2))
    f = f.to(device=device)
    return f


def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


to_2tuple = _ntuple(2)

activation_funcs = {
    "linear": EasyDict(
        func=lambda x, **_: x,
        def_alpha=0,
        def_gain=1,
        cuda_idx=1,
        ref="",
        has_2nd_grad=False,
    ),
    "relu": EasyDict(
        func=lambda x, **_: torch.nn.functional.relu(x),
        def_alpha=0,
        def_gain=np.sqrt(2),
        cuda_idx=2,
        ref="y",
        has_2nd_grad=False,
    ),
    "lrelu": EasyDict(
        func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha),
        def_alpha=0.2,
        def_gain=np.sqrt(2),
        cuda_idx=3,
        ref="y",
        has_2nd_grad=False,
    ),
    "tanh": EasyDict(
        func=lambda x, **_: torch.tanh(x),
        def_alpha=0,
        def_gain=1,
        cuda_idx=4,
        ref="y",
        has_2nd_grad=True,
    ),
    "sigmoid": EasyDict(
        func=lambda x, **_: torch.sigmoid(x),
        def_alpha=0,
        def_gain=1,
        cuda_idx=5,
        ref="y",
        has_2nd_grad=True,
    ),
    "elu": EasyDict(
        func=lambda x, **_: torch.nn.functional.elu(x),
        def_alpha=0,
        def_gain=1,
        cuda_idx=6,
        ref="y",
        has_2nd_grad=True,
    ),
    "selu": EasyDict(
        func=lambda x, **_: torch.nn.functional.selu(x),
        def_alpha=0,
        def_gain=1,
        cuda_idx=7,
        ref="y",
        has_2nd_grad=True,
    ),
    "softplus": EasyDict(
        func=lambda x, **_: torch.nn.functional.softplus(x),
        def_alpha=0,
        def_gain=1,
        cuda_idx=8,
        ref="y",
        has_2nd_grad=True,
    ),
    "swish": EasyDict(
        func=lambda x, **_: torch.sigmoid(x) * x,
        def_alpha=0,
        def_gain=np.sqrt(2),
        cuda_idx=9,
        ref="x",
        has_2nd_grad=True,
    ),
}


def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"):
    r"""Pad, upsample, filter, and downsample a batch of 2D images.

    Performs the following sequence of operations for each channel:

    1. Upsample the image by inserting N-1 zeros after each pixel (`up`).

    2. Pad the image with the specified number of zeros on each side (`padding`).
       Negative padding corresponds to cropping the image.

    3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it
       so that the footprint of all output pixels lies within the input image.

    4. Downsample the image by keeping every Nth pixel (`down`).

    This sequence of operations bears close resemblance to scipy.signal.upfirdn().
    The fused op is considerably more efficient than performing the same calculation
    using standard PyTorch ops. It supports gradients of arbitrary order.

    Args:
        x:           Float32/float64/float16 input tensor of the shape
                     `[batch_size, num_channels, in_height, in_width]`.
        f:           Float32 FIR filter of the shape
                     `[filter_height, filter_width]` (non-separable),
                     `[filter_taps]` (separable), or
                     `None` (identity).
        up:          Integer upsampling factor. Can be a single int or a list/tuple
                     `[x, y]` (default: 1).
        down:        Integer downsampling factor. Can be a single int or a list/tuple
                     `[x, y]` (default: 1).
        padding:     Padding with respect to the upsampled image. Can be a single number
                     or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
                     (default: 0).
        flip_filter: False = convolution, True = correlation (default: False).
        gain:        Overall scaling factor for signal magnitude (default: 1).
        impl:        Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).

    Returns:
        Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
    """
    # assert isinstance(x, torch.Tensor)
    # assert impl in ['ref', 'cuda']
    return _upfirdn2d_ref(
        x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain
    )


def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
    """Slow reference implementation of `upfirdn2d()` using standard PyTorch ops."""
    # Validate arguments.
    assert isinstance(x, torch.Tensor) and x.ndim == 4
    if f is None:
        f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
    assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
    assert not f.requires_grad
    batch_size, num_channels, in_height, in_width = x.shape
    # upx, upy = _parse_scaling(up)
    # downx, downy = _parse_scaling(down)

    upx, upy = up, up
    downx, downy = down, down

    # padx0, padx1, pady0, pady1 = _parse_padding(padding)
    padx0, padx1, pady0, pady1 = padding[0], padding[1], padding[2], padding[3]

    # Upsample by inserting zeros.
    x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
    x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
    x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])

    # Pad or crop.
    x = torch.nn.functional.pad(
        x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]
    )
    x = x[
        :,
        :,
        max(-pady0, 0) : x.shape[2] - max(-pady1, 0),
        max(-padx0, 0) : x.shape[3] - max(-padx1, 0),
    ]

    # Setup filter.
    f = f * (gain ** (f.ndim / 2))
    f = f.to(x.dtype)
    if not flip_filter:
        f = f.flip(list(range(f.ndim)))

    # Convolve with the filter.
    f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
    if f.ndim == 4:
        x = conv2d(input=x, weight=f, groups=num_channels)
    else:
        x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
        x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)

    # Downsample by throwing away pixels.
    x = x[:, :, ::downy, ::downx]
    return x


def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl="cuda"):
    r"""Downsample a batch of 2D images using the given 2D FIR filter.

    By default, the result is padded so that its shape is a fraction of the input.
    User-specified padding is applied on top of that, with negative values
    indicating cropping. Pixels outside the image are assumed to be zero.

    Args:
        x:           Float32/float64/float16 input tensor of the shape
                     `[batch_size, num_channels, in_height, in_width]`.
        f:           Float32 FIR filter of the shape
                     `[filter_height, filter_width]` (non-separable),
                     `[filter_taps]` (separable), or
                     `None` (identity).
        down:        Integer downsampling factor. Can be a single int or a list/tuple
                     `[x, y]` (default: 1).
        padding:     Padding with respect to the input. Can be a single number or a
                     list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
                     (default: 0).
        flip_filter: False = convolution, True = correlation (default: False).
        gain:        Overall scaling factor for signal magnitude (default: 1).
        impl:        Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).

    Returns:
        Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
    """
    downx, downy = _parse_scaling(down)
    # padx0, padx1, pady0, pady1 = _parse_padding(padding)
    padx0, padx1, pady0, pady1 = padding, padding, padding, padding

    fw, fh = _get_filter_size(f)
    p = [
        padx0 + (fw - downx + 1) // 2,
        padx1 + (fw - downx) // 2,
        pady0 + (fh - downy + 1) // 2,
        pady1 + (fh - downy) // 2,
    ]
    return upfirdn2d(
        x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl
    )


def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl="cuda"):
    r"""Upsample a batch of 2D images using the given 2D FIR filter.

    By default, the result is padded so that its shape is a multiple of the input.
    User-specified padding is applied on top of that, with negative values
    indicating cropping. Pixels outside the image are assumed to be zero.

    Args:
        x:           Float32/float64/float16 input tensor of the shape
                     `[batch_size, num_channels, in_height, in_width]`.
        f:           Float32 FIR filter of the shape
                     `[filter_height, filter_width]` (non-separable),
                     `[filter_taps]` (separable), or
                     `None` (identity).
        up:          Integer upsampling factor. Can be a single int or a list/tuple
                     `[x, y]` (default: 1).
        padding:     Padding with respect to the output. Can be a single number or a
                     list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
                     (default: 0).
        flip_filter: False = convolution, True = correlation (default: False).
        gain:        Overall scaling factor for signal magnitude (default: 1).
        impl:        Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).

    Returns:
        Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
    """
    upx, upy = _parse_scaling(up)
    # upx, upy = up, up
    padx0, padx1, pady0, pady1 = _parse_padding(padding)
    # padx0, padx1, pady0, pady1 = padding, padding, padding, padding
    fw, fh = _get_filter_size(f)
    p = [
        padx0 + (fw + upx - 1) // 2,
        padx1 + (fw - upx) // 2,
        pady0 + (fh + upy - 1) // 2,
        pady1 + (fh - upy) // 2,
    ]
    return upfirdn2d(
        x,
        f,
        up=up,
        padding=p,
        flip_filter=flip_filter,
        gain=gain * upx * upy,
        impl=impl,
    )


class MinibatchStdLayer(torch.nn.Module):
    def __init__(self, group_size, num_channels=1):
        super().__init__()
        self.group_size = group_size
        self.num_channels = num_channels

    def forward(self, x):
        N, C, H, W = x.shape
        G = (
            torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N))
            if self.group_size is not None
            else N
        )
        F = self.num_channels
        c = C // F

        y = x.reshape(
            G, -1, F, c, H, W
        )  # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
        y = y - y.mean(dim=0)  # [GnFcHW] Subtract mean over group.
        y = y.square().mean(dim=0)  # [nFcHW]  Calc variance over group.
        y = (y + 1e-8).sqrt()  # [nFcHW]  Calc stddev over group.
        y = y.mean(dim=[2, 3, 4])  # [nF]     Take average over channels and pixels.
        y = y.reshape(-1, F, 1, 1)  # [nF11]   Add missing dimensions.
        y = y.repeat(G, 1, H, W)  # [NFHW]   Replicate over group and pixels.
        x = torch.cat([x, y], dim=1)  # [NCHW]   Append to input as new channels.
        return x


class FullyConnectedLayer(torch.nn.Module):
    def __init__(
        self,
        in_features,  # Number of input features.
        out_features,  # Number of output features.
        bias=True,  # Apply additive bias before the activation function?
        activation="linear",  # Activation function: 'relu', 'lrelu', etc.
        lr_multiplier=1,  # Learning rate multiplier.
        bias_init=0,  # Initial value for the additive bias.
    ):
        super().__init__()
        self.weight = torch.nn.Parameter(
            torch.randn([out_features, in_features]) / lr_multiplier
        )
        self.bias = (
            torch.nn.Parameter(torch.full([out_features], np.float32(bias_init)))
            if bias
            else None
        )
        self.activation = activation

        self.weight_gain = lr_multiplier / np.sqrt(in_features)
        self.bias_gain = lr_multiplier

    def forward(self, x):
        w = self.weight * self.weight_gain
        b = self.bias
        if b is not None and self.bias_gain != 1:
            b = b * self.bias_gain

        if self.activation == "linear" and b is not None:
            # out = torch.addmm(b.unsqueeze(0), x, w.t())
            x = x.matmul(w.t())
            out = x + b.reshape([-1 if i == x.ndim - 1 else 1 for i in range(x.ndim)])
        else:
            x = x.matmul(w.t())
            out = bias_act(x, b, act=self.activation, dim=x.ndim - 1)
        return out


def _conv2d_wrapper(
    x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True
):
    """Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations."""
    out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)

    # Flip weight if requested.
    if (
        not flip_weight
    ):  # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
        w = w.flip([2, 3])

    # Workaround performance pitfall in cuDNN 8.0.5, triggered when using
    # 1x1 kernel + memory_format=channels_last + less than 64 channels.
    if (
        kw == 1
        and kh == 1
        and stride == 1
        and padding in [0, [0, 0], (0, 0)]
        and not transpose
    ):
        if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64:
            if out_channels <= 4 and groups == 1:
                in_shape = x.shape
                x = w.squeeze(3).squeeze(2) @ x.reshape(
                    [in_shape[0], in_channels_per_group, -1]
                )
                x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]])
            else:
                x = x.to(memory_format=torch.contiguous_format)
                w = w.to(memory_format=torch.contiguous_format)
                x = conv2d(x, w, groups=groups)
            return x.to(memory_format=torch.channels_last)

    # Otherwise => execute using conv2d_gradfix.
    op = conv_transpose2d if transpose else conv2d
    return op(x, w, stride=stride, padding=padding, groups=groups)


def conv2d_resample(
    x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False
):
    r"""2D convolution with optional up/downsampling.

    Padding is performed only once at the beginning, not between the operations.

    Args:
        x:              Input tensor of shape
                        `[batch_size, in_channels, in_height, in_width]`.
        w:              Weight tensor of shape
                        `[out_channels, in_channels//groups, kernel_height, kernel_width]`.
        f:              Low-pass filter for up/downsampling. Must be prepared beforehand by
                        calling setup_filter(). None = identity (default).
        up:             Integer upsampling factor (default: 1).
        down:           Integer downsampling factor (default: 1).
        padding:        Padding with respect to the upsampled image. Can be a single number
                        or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
                        (default: 0).
        groups:         Split input channels into N groups (default: 1).
        flip_weight:    False = convolution, True = correlation (default: True).
        flip_filter:    False = convolution, True = correlation (default: False).

    Returns:
        Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
    """
    # Validate arguments.
    assert isinstance(x, torch.Tensor) and (x.ndim == 4)
    assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
    assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2])
    assert isinstance(up, int) and (up >= 1)
    assert isinstance(down, int) and (down >= 1)
    # assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int)  {isinstance(groups, int)} {type(groups)}"
    out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
    fw, fh = _get_filter_size(f)
    # px0, px1, py0, py1 = _parse_padding(padding)
    px0, px1, py0, py1 = padding, padding, padding, padding

    # Adjust padding to account for up/downsampling.
    if up > 1:
        px0 += (fw + up - 1) // 2
        px1 += (fw - up) // 2
        py0 += (fh + up - 1) // 2
        py1 += (fh - up) // 2
    if down > 1:
        px0 += (fw - down + 1) // 2
        px1 += (fw - down) // 2
        py0 += (fh - down + 1) // 2
        py1 += (fh - down) // 2

    # Fast path: 1x1 convolution with downsampling only => downsample first, then convolve.
    if kw == 1 and kh == 1 and (down > 1 and up == 1):
        x = upfirdn2d(
            x=x, f=f, down=down, padding=[px0, px1, py0, py1], flip_filter=flip_filter
        )
        x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
        return x

    # Fast path: 1x1 convolution with upsampling only => convolve first, then upsample.
    if kw == 1 and kh == 1 and (up > 1 and down == 1):
        x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
        x = upfirdn2d(
            x=x,
            f=f,
            up=up,
            padding=[px0, px1, py0, py1],
            gain=up ** 2,
            flip_filter=flip_filter,
        )
        return x

    # Fast path: downsampling only => use strided convolution.
    if down > 1 and up == 1:
        x = upfirdn2d(x=x, f=f, padding=[px0, px1, py0, py1], flip_filter=flip_filter)
        x = _conv2d_wrapper(
            x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight
        )
        return x

    # Fast path: upsampling with optional downsampling => use transpose strided convolution.
    if up > 1:
        if groups == 1:
            w = w.transpose(0, 1)
        else:
            w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw)
            w = w.transpose(1, 2)
            w = w.reshape(
                groups * in_channels_per_group, out_channels // groups, kh, kw
            )
        px0 -= kw - 1
        px1 -= kw - up
        py0 -= kh - 1
        py1 -= kh - up
        pxt = max(min(-px0, -px1), 0)
        pyt = max(min(-py0, -py1), 0)
        x = _conv2d_wrapper(
            x=x,
            w=w,
            stride=up,
            padding=[pyt, pxt],
            groups=groups,
            transpose=True,
            flip_weight=(not flip_weight),
        )
        x = upfirdn2d(
            x=x,
            f=f,
            padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt],
            gain=up ** 2,
            flip_filter=flip_filter,
        )
        if down > 1:
            x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
        return x

    # Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d.
    if up == 1 and down == 1:
        if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0:
            return _conv2d_wrapper(
                x=x, w=w, padding=[py0, px0], groups=groups, flip_weight=flip_weight
            )

    # Fallback: Generic reference implementation.
    x = upfirdn2d(
        x=x,
        f=(f if up > 1 else None),
        up=up,
        padding=[px0, px1, py0, py1],
        gain=up ** 2,
        flip_filter=flip_filter,
    )
    x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
    if down > 1:
        x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
    return x


class Conv2dLayer(torch.nn.Module):
    def __init__(
        self,
        in_channels,  # Number of input channels.
        out_channels,  # Number of output channels.
        kernel_size,  # Width and height of the convolution kernel.
        bias=True,  # Apply additive bias before the activation function?
        activation="linear",  # Activation function: 'relu', 'lrelu', etc.
        up=1,  # Integer upsampling factor.
        down=1,  # Integer downsampling factor.
        resample_filter=[
            1,
            3,
            3,
            1,
        ],  # Low-pass filter to apply when resampling activations.
        conv_clamp=None,  # Clamp the output to +-X, None = disable clamping.
        channels_last=False,  # Expect the input to have memory_format=channels_last?
        trainable=True,  # Update the weights of this layer during training?
    ):
        super().__init__()
        self.activation = activation
        self.up = up
        self.down = down
        self.register_buffer("resample_filter", setup_filter(resample_filter))
        self.conv_clamp = conv_clamp
        self.padding = kernel_size // 2
        self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
        self.act_gain = activation_funcs[activation].def_gain

        memory_format = (
            torch.channels_last if channels_last else torch.contiguous_format
        )
        weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
            memory_format=memory_format
        )
        bias = torch.zeros([out_channels]) if bias else None
        if trainable:
            self.weight = torch.nn.Parameter(weight)
            self.bias = torch.nn.Parameter(bias) if bias is not None else None
        else:
            self.register_buffer("weight", weight)
            if bias is not None:
                self.register_buffer("bias", bias)
            else:
                self.bias = None

    def forward(self, x, gain=1):
        w = self.weight * self.weight_gain
        x = conv2d_resample(
            x=x,
            w=w,
            f=self.resample_filter,
            up=self.up,
            down=self.down,
            padding=self.padding,
        )

        act_gain = self.act_gain * gain
        act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
        out = bias_act(
            x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp
        )
        return out


def torch_gc():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()


def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def get_scheduler(sd_sampler, scheduler_config):
    if sd_sampler == SDSampler.ddim:
        return DDIMScheduler.from_config(scheduler_config)
    elif sd_sampler == SDSampler.pndm:
        return PNDMScheduler.from_config(scheduler_config)
    elif sd_sampler == SDSampler.k_lms:
        return LMSDiscreteScheduler.from_config(scheduler_config)
    elif sd_sampler == SDSampler.k_euler:
        return EulerDiscreteScheduler.from_config(scheduler_config)
    elif sd_sampler == SDSampler.k_euler_a:
        return EulerAncestralDiscreteScheduler.from_config(scheduler_config)
    elif sd_sampler == SDSampler.dpm_plus_plus:
        return DPMSolverMultistepScheduler.from_config(scheduler_config)
    elif sd_sampler == SDSampler.uni_pc:
        return UniPCMultistepScheduler.from_config(scheduler_config)
    else:
        raise ValueError(sd_sampler)