File size: 15,637 Bytes
2fe55e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import os
import time
import cv2
import torch
import torch.nn.functional as F
from lama_cleaner.helper import get_cache_path_by_url, load_jit_model
from lama_cleaner.schema import Config
import numpy as np
from lama_cleaner.model.base import InpaintModel
ZITS_INPAINT_MODEL_URL = os.environ.get(
"ZITS_INPAINT_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt",
)
ZITS_INPAINT_MODEL_MD5 = os.environ.get(
"ZITS_INPAINT_MODEL_MD5", "9978cc7157dc29699e42308d675b2154"
)
ZITS_EDGE_LINE_MODEL_URL = os.environ.get(
"ZITS_EDGE_LINE_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt",
)
ZITS_EDGE_LINE_MODEL_MD5 = os.environ.get(
"ZITS_EDGE_LINE_MODEL_MD5", "55e31af21ba96bbf0c80603c76ea8c5f"
)
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get(
"ZITS_STRUCTURE_UPSAMPLE_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt",
)
ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5 = os.environ.get(
"ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5", "3d88a07211bd41b2ec8cc0d999f29927"
)
ZITS_WIRE_FRAME_MODEL_URL = os.environ.get(
"ZITS_WIRE_FRAME_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt",
)
ZITS_WIRE_FRAME_MODEL_MD5 = os.environ.get(
"ZITS_WIRE_FRAME_MODEL_MD5", "a9727c63a8b48b65c905d351b21ce46b"
)
def resize(img, height, width, center_crop=False):
imgh, imgw = img.shape[0:2]
if center_crop and imgh != imgw:
# center crop
side = np.minimum(imgh, imgw)
j = (imgh - side) // 2
i = (imgw - side) // 2
img = img[j : j + side, i : i + side, ...]
if imgh > height and imgw > width:
inter = cv2.INTER_AREA
else:
inter = cv2.INTER_LINEAR
img = cv2.resize(img, (height, width), interpolation=inter)
return img
def to_tensor(img, scale=True, norm=False):
if img.ndim == 2:
img = img[:, :, np.newaxis]
c = img.shape[-1]
if scale:
img_t = torch.from_numpy(img).permute(2, 0, 1).float().div(255)
else:
img_t = torch.from_numpy(img).permute(2, 0, 1).float()
if norm:
mean = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
std = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
img_t = (img_t - mean) / std
return img_t
def load_masked_position_encoding(mask):
ones_filter = np.ones((3, 3), dtype=np.float32)
d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)
d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32)
d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32)
d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32)
str_size = 256
pos_num = 128
ori_mask = mask.copy()
ori_h, ori_w = ori_mask.shape[0:2]
ori_mask = ori_mask / 255
mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA)
mask[mask > 0] = 255
h, w = mask.shape[0:2]
mask3 = mask.copy()
mask3 = 1.0 - (mask3 / 255.0)
pos = np.zeros((h, w), dtype=np.int32)
direct = np.zeros((h, w, 4), dtype=np.int32)
i = 0
while np.sum(1 - mask3) > 0:
i += 1
mask3_ = cv2.filter2D(mask3, -1, ones_filter)
mask3_[mask3_ > 0] = 1
sub_mask = mask3_ - mask3
pos[sub_mask == 1] = i
m = cv2.filter2D(mask3, -1, d_filter1)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 0] = 1
m = cv2.filter2D(mask3, -1, d_filter2)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 1] = 1
m = cv2.filter2D(mask3, -1, d_filter3)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 2] = 1
m = cv2.filter2D(mask3, -1, d_filter4)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 3] = 1
mask3 = mask3_
abs_pos = pos.copy()
rel_pos = pos / (str_size / 2) # to 0~1 maybe larger than 1
rel_pos = (rel_pos * pos_num).astype(np.int32)
rel_pos = np.clip(rel_pos, 0, pos_num - 1)
if ori_w != w or ori_h != h:
rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
rel_pos[ori_mask == 0] = 0
direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
direct[ori_mask == 0, :] = 0
return rel_pos, abs_pos, direct
def load_image(img, mask, device, sigma256=3.0):
"""
Args:
img: [H, W, C] RGB
mask: [H, W] 255 为 masks 区域
sigma256:
Returns:
"""
h, w, _ = img.shape
imgh, imgw = img.shape[0:2]
img_256 = resize(img, 256, 256)
mask = (mask > 127).astype(np.uint8) * 255
mask_256 = cv2.resize(mask, (256, 256), interpolation=cv2.INTER_AREA)
mask_256[mask_256 > 0] = 255
mask_512 = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_AREA)
mask_512[mask_512 > 0] = 255
# original skimage implemention
# https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
# low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max.
# high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max.
try:
import skimage
gray_256 = skimage.color.rgb2gray(img_256)
edge_256 = skimage.feature.canny(gray_256, sigma=3.0, mask=None).astype(float)
# cv2.imwrite("skimage_gray.jpg", (gray_256*255).astype(np.uint8))
# cv2.imwrite("skimage_edge.jpg", (edge_256*255).astype(np.uint8))
except:
gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(7, 7), sigmaX=sigma256, sigmaY=sigma256)
edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
# cv2.imwrite("opencv_edge.jpg", edge_256)
# line
img_512 = resize(img, 512, 512)
rel_pos, abs_pos, direct = load_masked_position_encoding(mask)
batch = dict()
batch["images"] = to_tensor(img.copy()).unsqueeze(0).to(device)
batch["img_256"] = to_tensor(img_256, norm=True).unsqueeze(0).to(device)
batch["masks"] = to_tensor(mask).unsqueeze(0).to(device)
batch["mask_256"] = to_tensor(mask_256).unsqueeze(0).to(device)
batch["mask_512"] = to_tensor(mask_512).unsqueeze(0).to(device)
batch["edge_256"] = to_tensor(edge_256, scale=False).unsqueeze(0).to(device)
batch["img_512"] = to_tensor(img_512).unsqueeze(0).to(device)
batch["rel_pos"] = torch.LongTensor(rel_pos).unsqueeze(0).to(device)
batch["abs_pos"] = torch.LongTensor(abs_pos).unsqueeze(0).to(device)
batch["direct"] = torch.LongTensor(direct).unsqueeze(0).to(device)
batch["h"] = imgh
batch["w"] = imgw
return batch
def to_device(data, device):
if isinstance(data, torch.Tensor):
return data.to(device)
if isinstance(data, dict):
for key in data:
if isinstance(data[key], torch.Tensor):
data[key] = data[key].to(device)
return data
if isinstance(data, list):
return [to_device(d, device) for d in data]
class ZITS(InpaintModel):
name = "zits"
min_size = 256
pad_mod = 32
pad_to_square = True
def __init__(self, device, **kwargs):
"""
Args:
device:
"""
super().__init__(device)
self.device = device
self.sample_edge_line_iterations = 1
def init_model(self, device, **kwargs):
self.wireframe = load_jit_model(ZITS_WIRE_FRAME_MODEL_URL, device, ZITS_WIRE_FRAME_MODEL_MD5)
self.edge_line = load_jit_model(ZITS_EDGE_LINE_MODEL_URL, device, ZITS_EDGE_LINE_MODEL_MD5)
self.structure_upsample = load_jit_model(
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device, ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5
)
self.inpaint = load_jit_model(ZITS_INPAINT_MODEL_URL, device, ZITS_INPAINT_MODEL_MD5)
@staticmethod
def is_downloaded() -> bool:
model_paths = [
get_cache_path_by_url(ZITS_WIRE_FRAME_MODEL_URL),
get_cache_path_by_url(ZITS_EDGE_LINE_MODEL_URL),
get_cache_path_by_url(ZITS_STRUCTURE_UPSAMPLE_MODEL_URL),
get_cache_path_by_url(ZITS_INPAINT_MODEL_URL),
]
return all([os.path.exists(it) for it in model_paths])
def wireframe_edge_and_line(self, items, enable: bool):
# 最终向 items 中添加 edge 和 line key
if not enable:
items["edge"] = torch.zeros_like(items["masks"])
items["line"] = torch.zeros_like(items["masks"])
return
start = time.time()
try:
line_256 = self.wireframe_forward(
items["img_512"],
h=256,
w=256,
masks=items["mask_512"],
mask_th=0.85,
)
except:
line_256 = torch.zeros_like(items["mask_256"])
print(f"wireframe_forward time: {(time.time() - start) * 1000:.2f}ms")
# np_line = (line[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("line.jpg", np_line)
start = time.time()
edge_pred, line_pred = self.sample_edge_line_logits(
context=[items["img_256"], items["edge_256"], line_256],
mask=items["mask_256"].clone(),
iterations=self.sample_edge_line_iterations,
add_v=0.05,
mul_v=4,
)
print(f"sample_edge_line_logits time: {(time.time() - start) * 1000:.2f}ms")
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("edge_pred.jpg", np_edge_pred)
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("line_pred.jpg", np_line_pred)
# exit()
input_size = min(items["h"], items["w"])
if input_size != 256 and input_size > 256:
while edge_pred.shape[2] < input_size:
edge_pred = self.structure_upsample(edge_pred)
edge_pred = torch.sigmoid((edge_pred + 2) * 2)
line_pred = self.structure_upsample(line_pred)
line_pred = torch.sigmoid((line_pred + 2) * 2)
edge_pred = F.interpolate(
edge_pred,
size=(input_size, input_size),
mode="bilinear",
align_corners=False,
)
line_pred = F.interpolate(
line_pred,
size=(input_size, input_size),
mode="bilinear",
align_corners=False,
)
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("edge_pred_upsample.jpg", np_edge_pred)
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("line_pred_upsample.jpg", np_line_pred)
# exit()
items["edge"] = edge_pred.detach()
items["line"] = line_pred.detach()
@torch.no_grad()
def forward(self, image, mask, config: Config):
"""Input images and output images have same size
images: [H, W, C] RGB
masks: [H, W]
return: BGR IMAGE
"""
mask = mask[:, :, 0]
items = load_image(image, mask, device=self.device)
self.wireframe_edge_and_line(items, config.zits_wireframe)
inpainted_image = self.inpaint(
items["images"],
items["masks"],
items["edge"],
items["line"],
items["rel_pos"],
items["direct"],
)
inpainted_image = inpainted_image * 255.0
inpainted_image = (
inpainted_image.cpu().permute(0, 2, 3, 1)[0].numpy().astype(np.uint8)
)
inpainted_image = inpainted_image[:, :, ::-1]
# cv2.imwrite("inpainted.jpg", inpainted_image)
# exit()
return inpainted_image
def wireframe_forward(self, images, h, w, masks, mask_th=0.925):
lcnn_mean = torch.tensor([109.730, 103.832, 98.681]).reshape(1, 3, 1, 1)
lcnn_std = torch.tensor([22.275, 22.124, 23.229]).reshape(1, 3, 1, 1)
images = images * 255.0
# the masks value of lcnn is 127.5
masked_images = images * (1 - masks) + torch.ones_like(images) * masks * 127.5
masked_images = (masked_images - lcnn_mean) / lcnn_std
def to_int(x):
return tuple(map(int, x))
lines_tensor = []
lmap = np.zeros((h, w))
output_masked = self.wireframe(masked_images)
output_masked = to_device(output_masked, "cpu")
if output_masked["num_proposals"] == 0:
lines_masked = []
scores_masked = []
else:
lines_masked = output_masked["lines_pred"].numpy()
lines_masked = [
[line[1] * h, line[0] * w, line[3] * h, line[2] * w]
for line in lines_masked
]
scores_masked = output_masked["lines_score"].numpy()
for line, score in zip(lines_masked, scores_masked):
if score > mask_th:
try:
import skimage
rr, cc, value = skimage.draw.line_aa(
*to_int(line[0:2]), *to_int(line[2:4])
)
lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
except:
cv2.line(lmap, to_int(line[0:2][::-1]), to_int(line[2:4][::-1]), (1, 1, 1), 1, cv2.LINE_AA)
lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
lines_tensor.append(to_tensor(lmap).unsqueeze(0))
lines_tensor = torch.cat(lines_tensor, dim=0)
return lines_tensor.detach().to(self.device)
def sample_edge_line_logits(
self, context, mask=None, iterations=1, add_v=0, mul_v=4
):
[img, edge, line] = context
img = img * (1 - mask)
edge = edge * (1 - mask)
line = line * (1 - mask)
for i in range(iterations):
edge_logits, line_logits = self.edge_line(img, edge, line, masks=mask)
edge_pred = torch.sigmoid(edge_logits)
line_pred = torch.sigmoid((line_logits + add_v) * mul_v)
edge = edge + edge_pred * mask
edge[edge >= 0.25] = 1
edge[edge < 0.25] = 0
line = line + line_pred * mask
b, _, h, w = edge_pred.shape
edge_pred = edge_pred.reshape(b, -1, 1)
line_pred = line_pred.reshape(b, -1, 1)
mask = mask.reshape(b, -1)
edge_probs = torch.cat([1 - edge_pred, edge_pred], dim=-1)
line_probs = torch.cat([1 - line_pred, line_pred], dim=-1)
edge_probs[:, :, 1] += 0.5
line_probs[:, :, 1] += 0.5
edge_max_probs = edge_probs.max(dim=-1)[0] + (1 - mask) * (-100)
line_max_probs = line_probs.max(dim=-1)[0] + (1 - mask) * (-100)
indices = torch.sort(
edge_max_probs + line_max_probs, dim=-1, descending=True
)[1]
for ii in range(b):
keep = int((i + 1) / iterations * torch.sum(mask[ii, ...]))
assert torch.sum(mask[ii][indices[ii, :keep]]) == keep, "Error!!!"
mask[ii][indices[ii, :keep]] = 0
mask = mask.reshape(b, 1, h, w)
edge = edge * (1 - mask)
line = line * (1 - mask)
edge, line = edge.to(torch.float32), line.to(torch.float32)
return edge, line
|