File size: 9,606 Bytes
2fe55e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import abc
from typing import Optional

import cv2
import torch
import numpy as np
from loguru import logger

from lama_cleaner.helper import (
    boxes_from_mask,
    resize_max_size,
    pad_img_to_modulo,
    switch_mps_device,
)
from lama_cleaner.schema import Config, HDStrategy


class InpaintModel:
    name = "base"
    min_size: Optional[int] = None
    pad_mod = 8
    pad_to_square = False

    def __init__(self, device, **kwargs):
        """

        Args:
            device:
        """
        device = switch_mps_device(self.name, device)
        self.device = device
        self.init_model(device, **kwargs)

    @abc.abstractmethod
    def init_model(self, device, **kwargs):
        ...

    @staticmethod
    @abc.abstractmethod
    def is_downloaded() -> bool:
        ...

    @abc.abstractmethod
    def forward(self, image, mask, config: Config):
        """Input images and output images have same size
        images: [H, W, C] RGB
        masks: [H, W, 1] 255 为 masks 区域
        return: BGR IMAGE
        """
        ...

    def _pad_forward(self, image, mask, config: Config):
        origin_height, origin_width = image.shape[:2]
        pad_image = pad_img_to_modulo(
            image, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
        )
        pad_mask = pad_img_to_modulo(
            mask, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
        )

        logger.info(f"final forward pad size: {pad_image.shape}")

        result = self.forward(pad_image, pad_mask, config)
        result = result[0:origin_height, 0:origin_width, :]

        result, image, mask = self.forward_post_process(result, image, mask, config)

        mask = mask[:, :, np.newaxis]
        result = result * (mask / 255) + image[:, :, ::-1] * (1 - (mask / 255))
        return result

    def forward_post_process(self, result, image, mask, config):
        return result, image, mask

    @torch.no_grad()
    def __call__(self, image, mask, config: Config):
        """
        images: [H, W, C] RGB, not normalized
        masks: [H, W]
        return: BGR IMAGE
        """
        inpaint_result = None
        logger.info(f"hd_strategy: {config.hd_strategy}")
        if config.hd_strategy == HDStrategy.CROP:
            if max(image.shape) > config.hd_strategy_crop_trigger_size:
                logger.info(f"Run crop strategy")
                boxes = boxes_from_mask(mask)
                crop_result = []
                for box in boxes:
                    crop_image, crop_box = self._run_box(image, mask, box, config)
                    crop_result.append((crop_image, crop_box))

                inpaint_result = image[:, :, ::-1]
                for crop_image, crop_box in crop_result:
                    x1, y1, x2, y2 = crop_box
                    inpaint_result[y1:y2, x1:x2, :] = crop_image

        elif config.hd_strategy == HDStrategy.RESIZE:
            if max(image.shape) > config.hd_strategy_resize_limit:
                origin_size = image.shape[:2]
                downsize_image = resize_max_size(
                    image, size_limit=config.hd_strategy_resize_limit
                )
                downsize_mask = resize_max_size(
                    mask, size_limit=config.hd_strategy_resize_limit
                )

                logger.info(
                    f"Run resize strategy, origin size: {image.shape} forward size: {downsize_image.shape}"
                )
                inpaint_result = self._pad_forward(
                    downsize_image, downsize_mask, config
                )

                # only paste masked area result
                inpaint_result = cv2.resize(
                    inpaint_result,
                    (origin_size[1], origin_size[0]),
                    interpolation=cv2.INTER_CUBIC,
                )
                original_pixel_indices = mask < 127
                inpaint_result[original_pixel_indices] = image[:, :, ::-1][
                    original_pixel_indices
                ]

        if inpaint_result is None:
            inpaint_result = self._pad_forward(image, mask, config)

        return inpaint_result

    def _crop_box(self, image, mask, box, config: Config):
        """

        Args:
            image: [H, W, C] RGB
            mask: [H, W, 1]
            box: [left,top,right,bottom]

        Returns:
            BGR IMAGE, (l, r, r, b)
        """
        box_h = box[3] - box[1]
        box_w = box[2] - box[0]
        cx = (box[0] + box[2]) // 2
        cy = (box[1] + box[3]) // 2
        img_h, img_w = image.shape[:2]

        w = box_w + config.hd_strategy_crop_margin * 2
        h = box_h + config.hd_strategy_crop_margin * 2

        _l = cx - w // 2
        _r = cx + w // 2
        _t = cy - h // 2
        _b = cy + h // 2

        l = max(_l, 0)
        r = min(_r, img_w)
        t = max(_t, 0)
        b = min(_b, img_h)

        # try to get more context when crop around image edge
        if _l < 0:
            r += abs(_l)
        if _r > img_w:
            l -= _r - img_w
        if _t < 0:
            b += abs(_t)
        if _b > img_h:
            t -= _b - img_h

        l = max(l, 0)
        r = min(r, img_w)
        t = max(t, 0)
        b = min(b, img_h)

        crop_img = image[t:b, l:r, :]
        crop_mask = mask[t:b, l:r]

        logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}")

        return crop_img, crop_mask, [l, t, r, b]

    def _calculate_cdf(self, histogram):
        cdf = histogram.cumsum()
        normalized_cdf = cdf / float(cdf.max())
        return normalized_cdf

    def _calculate_lookup(self, source_cdf, reference_cdf):
        lookup_table = np.zeros(256)
        lookup_val = 0
        for source_index, source_val in enumerate(source_cdf):
            for reference_index, reference_val in enumerate(reference_cdf):
                if reference_val >= source_val:
                    lookup_val = reference_index
                    break
            lookup_table[source_index] = lookup_val
        return lookup_table

    def _match_histograms(self, source, reference, mask):
        transformed_channels = []
        for channel in range(source.shape[-1]):
            source_channel = source[:, :, channel]
            reference_channel = reference[:, :, channel]

            # only calculate histograms for non-masked parts
            source_histogram, _ = np.histogram(source_channel[mask == 0], 256, [0, 256])
            reference_histogram, _ = np.histogram(
                reference_channel[mask == 0], 256, [0, 256]
            )

            source_cdf = self._calculate_cdf(source_histogram)
            reference_cdf = self._calculate_cdf(reference_histogram)

            lookup = self._calculate_lookup(source_cdf, reference_cdf)

            transformed_channels.append(cv2.LUT(source_channel, lookup))

        result = cv2.merge(transformed_channels)
        result = cv2.convertScaleAbs(result)

        return result

    def _apply_cropper(self, image, mask, config: Config):
        img_h, img_w = image.shape[:2]
        l, t, w, h = (
            config.croper_x,
            config.croper_y,
            config.croper_width,
            config.croper_height,
        )
        r = l + w
        b = t + h

        l = max(l, 0)
        r = min(r, img_w)
        t = max(t, 0)
        b = min(b, img_h)

        crop_img = image[t:b, l:r, :]
        crop_mask = mask[t:b, l:r]
        return crop_img, crop_mask, (l, t, r, b)

    def _run_box(self, image, mask, box, config: Config):
        """

        Args:
            image: [H, W, C] RGB
            mask: [H, W, 1]
            box: [left,top,right,bottom]

        Returns:
            BGR IMAGE
        """
        crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config)

        return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b]


class DiffusionInpaintModel(InpaintModel):
    @torch.no_grad()
    def __call__(self, image, mask, config: Config):
        """
        images: [H, W, C] RGB, not normalized
        masks: [H, W]
        return: BGR IMAGE
        """
        # boxes = boxes_from_mask(mask)
        if config.use_croper:
            crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
            crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
            inpaint_result = image[:, :, ::-1]
            inpaint_result[t:b, l:r, :] = crop_image
        else:
            inpaint_result = self._scaled_pad_forward(image, mask, config)

        return inpaint_result

    def _scaled_pad_forward(self, image, mask, config: Config):
        longer_side_length = int(config.sd_scale * max(image.shape[:2]))
        origin_size = image.shape[:2]
        downsize_image = resize_max_size(image, size_limit=longer_side_length)
        downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
        if config.sd_scale != 1:
            logger.info(
                f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}"
            )
        inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
        # only paste masked area result
        inpaint_result = cv2.resize(
            inpaint_result,
            (origin_size[1], origin_size[0]),
            interpolation=cv2.INTER_CUBIC,
        )
        original_pixel_indices = mask < 127
        inpaint_result[original_pixel_indices] = image[:, :, ::-1][
            original_pixel_indices
        ]
        return inpaint_result