File size: 17,730 Bytes
3506b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import os
import json
import torch
import sqlite3
import gradio as gr
import faiss
import pandas as pd
from datetime import datetime
from PIL import Image
from flask import Flask, jsonify, request
from werkzeug.utils import secure_filename
from threading import Thread
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, AutoTokenizer, AutoModel, \
    AutoModelForCausalLM
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
import numpy as np
import seaborn as sns
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torch import nn, optim
from torch.optim import lr_scheduler
from sklearn.preprocessing import LabelEncoder


# Initialize Flask app and models
app = Flask(__name__, static_folder="static")

# Constants
LOW_STOCK_THRESHOLD = 5  # Customize threshold as needed
DATABASE = 'uploaded_images.db'

# Available model options
MODEL_OPTIONS = {
    "Google ViT (Base)": "google/vit-base-patch16-224",
    "Google ViT (Large)": "google/vit-large-patch16-224",
    "Microsoft ResNet50": "microsoft/resnet-50",
    "Facebook ConvNeXt Tiny": "facebook/convnext-tiny-224",
    "Microsoft Swin": "microsoft/swin-tiny-patch4-window7-224",
}

# Set default model
selected_model_name = MODEL_OPTIONS["Google ViT (Base)"]
feature_extractor = AutoFeatureExtractor.from_pretrained(selected_model_name)
model = AutoModelForImageClassification.from_pretrained(selected_model_name)
class_names = model.config.id2label

# Initialize inventory data
inventory_data = {}


# Initialize database
def init_db():
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute("""
        CREATE TABLE IF NOT EXISTS images (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            filename TEXT,
            upload_time TEXT
        )
    """)
    conn.commit()
    conn.close()


init_db()


def plot_bar_chart(inventory_data):
    # Get the list of items and their counts
    items = list(inventory_data.keys())
    counts = [inventory_data[item]["count"] for item in items]

    # Extract only the first word from each item name
    first_words = [item.split()[0] for item in items]

    # Create the bar chart
    fig, ax = plt.subplots(figsize=(8, 6))
    ax.bar(first_words, counts, color="skyblue")

    # Set titles and labels
    ax.set_title("Inventory Counts")
    ax.set_xlabel("Items")
    ax.set_ylabel("Count")

    # Save the chart as a PNG file
    chart_path = "bar_chart.png"
    plt.tight_layout()
    plt.savefig(chart_path)
    plt.close()

    return chart_path



def plot_line_chart(inventory_data):
    # Extract items, counts, and dates from inventory data
    items = list(inventory_data.keys())
    counts = [inventory_data[item]["count"] for item in items]
    dates = [inventory_data[item]["last_detected"] for item in items]

    # Convert string dates to pandas datetime objects
    dates = pd.to_datetime(dates)

    # Create a DataFrame with dates and counts
    counts_df = pd.DataFrame({"Date": dates, "Count": counts})
    counts_df.sort_values("Date", inplace=True)

    # Format the 'Date' column into a human-readable format
    counts_df["Date"] = counts_df["Date"].dt.strftime('%Y-%m-%d %H:%M:%S')

    # Create the plot
    fig, ax = plt.subplots(figsize=(8, 6))
    ax.plot(counts_df["Date"], counts_df["Count"], marker="o", color="orange")

    # Set the title and labels for the plot
    ax.set_title("Stock Changes Over Time")
    ax.set_xlabel("Date")
    ax.set_ylabel("Stock Level")

    # Save the plot as a PNG file
    chart_path = "line_chart.png"
    plt.xticks(rotation=45)  # Rotate x-ticks for better readability
    plt.tight_layout()
    plt.savefig(chart_path)
    plt.close()

    return chart_path


def plot_pie_chart(inventory_data):
    # Get the list of items and their counts
    items = list(inventory_data.keys())
    counts = [inventory_data[item]["count"] for item in items]

    # Extract only the first word from each item name
    first_words = [item.split()[0] for item in items]

    # Create the pie chart
    fig, ax = plt.subplots(figsize=(8, 6))
    ax.pie(counts, labels=first_words, autopct='%1.1f%%', startangle=140, colors=plt.cm.Paired.colors)

    # Set the title
    ax.set_title("Product Category Breakdown")

    # Save the chart as a PNG file
    chart_path = "pie_chart.png"
    plt.tight_layout()
    plt.savefig(chart_path)
    plt.close()

    return chart_path



def plot_heatmap(inventory_data):
    # Get the list of items
    items = list(inventory_data.keys())

    # Extract only the first word from each item name
    first_words = [item.split()[0] for item in items]

    # Create a matrix where the count is placed at the correct location
    change_matrix = [[inventory_data[item]["count"] if item == other else 0 for other in items] for item in items]

    # Create the heatmap
    fig, ax = plt.subplots(figsize=(8, 6))
    cax = ax.imshow(change_matrix, cmap="YlOrRd", interpolation='nearest')
    # Set the labels on the x and y axes to the first words of the items
    ax.set_xticks(range(len(items)))
    ax.set_yticks(range(len(items)))
    ax.set_xticklabels(first_words)
    ax.set_yticklabels(first_words)
    # Add a colorbar
    fig.colorbar(cax)
    # Set the title of the heatmap
    ax.set_title("Stock Change Heatmap")
    # Save the chart as a PNG file
    chart_path = "heatmap.png"
    plt.tight_layout()
    plt.savefig(chart_path)
    plt.close()

    return chart_path



# Function to return the paths of the images
def generate_bar_chart():
    return plot_bar_chart(inventory_data)


def generate_line_chart():
    return plot_line_chart(inventory_data)


def generate_pie_chart():
    return plot_pie_chart(inventory_data)


def generate_heatmap():
    return plot_heatmap(inventory_data)


# Utility functions
def log_inventory_data(item_class):
    try:
        timestamp = datetime.now().isoformat()

        # Initialize the inventory data for the item class if it's not present
        if item_class not in inventory_data:
            inventory_data[item_class] = {
                "category": item_class,
                "count": 0,  # Initial count
                "last_detected": None,  # Timestamp of last detection
                "history": []  # Track the historical counts over time
            }

        # Log the count and timestamp to the history
        inventory_data[item_class]["history"].append({
            "timestamp": timestamp,  # Store the timestamp as a string
            "count": inventory_data[item_class]["count"]
        })

        # Update the count of the item class
        inventory_data[item_class]["count"] += 1

        # Update the last detected timestamp
        inventory_data[item_class]["last_detected"] = timestamp

        # Optionally: Save the data to a file for persistence
        with open("inventory_log.json", "w") as f:
            json.dump(inventory_data, f, indent=4)

        print(f"Inventory data logged for item class: {item_class}")

    except Exception as e:
        print(f"Error logging inventory data: {e}")


def check_stock_levels():
    try:
        for item, details in inventory_data.items():
            if details["count"] < LOW_STOCK_THRESHOLD:
                print(f"Low stock detected for {item}: {details['count']} items.")
    except Exception as e:
        print(f"Error checking stock levels: {e}")


def save_image_to_db(file):
    filename = secure_filename(file.filename)
    upload_time = datetime.now().isoformat()
    file_path = os.path.join("uploads", filename)
    file.save(file_path)
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute("INSERT INTO images (filename, upload_time) VALUES (?, ?)", (filename, upload_time))
    conn.commit()
    conn.close()


def batch_predict(images):
    results = []
    try:
        for image_file in images:
            with Image.open(image_file.name) as image:
                if image.mode != "RGB":
                    image = image.convert("RGB")
                inputs = feature_extractor(images=image, return_tensors="pt")
                outputs = model(**inputs)
                predicted_class_id = torch.argmax(outputs.logits, dim=1).item()
                item_class = class_names[predicted_class_id]
                log_inventory_data(item_class)  # Pass only the item_class argument
                results.append({"Image": os.path.basename(image_file.name), "Classification": item_class})
    except Exception as e:
        return [{"Image": "Error", "Classification": str(e)}]
    return pd.DataFrame(results)


def forecast_inventory(item_class, days=7):
    """Use linear regression for basic inventory forecasting."""
    try:
        # Get the historical data for the item class
        if item_class not in inventory_data or not inventory_data[item_class]["history"]:
            return {"error": f"No historical data for {item_class}."}

        history = inventory_data[item_class]["history"]
        timestamps = [datetime.fromisoformat(entry["timestamp"]) for entry in history]
        counts = [entry["count"] for entry in history]

        # Convert timestamps to days since the first entry
        days_since_first_entry = [(timestamp - timestamps[0]).days for timestamp in timestamps]

        # Apply linear regression to forecast the next `days` values
        model = LinearRegression()
        model.fit(np.array(days_since_first_entry).reshape(-1, 1), counts)

        # Predict future inventory counts
        future_days = np.array([days_since_first_entry[-1] + i for i in range(1, days + 1)]).reshape(-1, 1)
        predictions = model.predict(future_days)

        forecast = [{"day": i + 1, "predicted_count": int(predictions[i])} for i in range(days)]
        return forecast
        print(f"Inventory data logged for item class: {forecast}")

    except Exception as e:
        return {"error": f"Error in forecasting: {str(e)}"}


def change_model(selected_model_key):
    try:
        global feature_extractor, model, class_names

        if selected_model_key not in MODEL_OPTIONS:
            return "Error: Invalid model selection"

        # Retrieve the model path (either pre-trained or fine-tuned)
        selected_model_path = MODEL_OPTIONS[selected_model_key]

        # Load the model from the specified path
        feature_extractor = AutoFeatureExtractor.from_pretrained(selected_model_path)
        model = AutoModelForImageClassification.from_pretrained(selected_model_path)
        class_names = model.config.id2label

        return f"Model changed to {selected_model_key}"
    except Exception as e:
        return f"Error changing model: {str(e)}"


# Define a custom dataset class
class CustomDataset(Dataset):
    def __init__(self, images, labels, transform=None):
        self.images = images
        self.labels = labels
        self.transform = transform

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        image = Image.open(self.images[idx]).convert("RGB")
        label = self.labels[idx]
        if self.transform:
            image = self.transform(image)
        return image, label

# Define transformations for image preprocessing
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# Function to preprocess and load data
def preprocess_data(train_images, train_labels):
    dataset = CustomDataset(train_images, train_labels, transform=transform)
    dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
    return dataloader


# Fine-tune the model with a custom dataset
def fine_tune_model(train_images, train_labels, model_name="custom_model"):
    try:
        # Convert image paths to a suitable format
        train_images = [image.name for image in train_images]  # list of image paths

        # Check if labels need encoding
        if isinstance(train_labels, str):
            train_labels = train_labels.split(",")  # Convert the comma-separated string to a list

        # Encode labels if they are not integers
        label_encoder = LabelEncoder()
        train_labels = label_encoder.fit_transform(train_labels)

        # Load the model and prepare for fine-tuning
        global model
        model = AutoModelForImageClassification.from_pretrained(selected_model_name)

        # Modify the classifier layer for the new dataset
        num_labels = len(set(train_labels))  # Number of unique labels
        model.classifier = nn.Linear(model.config.hidden_size, num_labels)

        # Prepare data loader
        dataloader = preprocess_data(train_images, train_labels)

        # Define loss function, optimizer, and learning rate scheduler
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.0001)
        scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

        # Training loop
        num_epochs = 50  # Set the number of epochs
        model.train()  # Set model to training mode
        for epoch in range(num_epochs):
            running_loss = 0.0
            for inputs, labels in dataloader:
                optimizer.zero_grad()

                # Forward pass
                outputs = model(inputs)
                logits = outputs.logits if hasattr(outputs, "logits") else outputs  # Handle outputs

                # Calculate loss
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()

                running_loss += loss.item()

            scheduler.step()
            print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(dataloader)}")
            # return f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(dataloader)}"

        # Save the fine-tuned model
        fine_tuned_model_path = f"models/{model_name}"  # Save path
        model.save_pretrained(fine_tuned_model_path)
        print(f"Fine-tuned model saved to {fine_tuned_model_path}")

        # Dynamically add the fine-tuned model to the model selection
        MODEL_OPTIONS[model_name] = fine_tuned_model_path
        return f"Fine-tuned model {model_name} has been added successfully!"
    except Exception as e:
        return f"Error fine-tuning the model: {str(e)}"



proxy_prefix = os.environ.get("PROXY_PREFIX")

# Gradio Interface
with gr.Blocks() as interface:
    gr.Markdown("## VisionTrack - Smart Inventory Management and Analysis System")

    with gr.Tab("Model Selection/Fine-Tuning"):
        with gr.Tab("Select Model"):
            gr.Markdown("Choose a model for image classification.")
            model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model",
                                         value="Google ViT (Base)")
            model_dropdown.change(change_model, inputs=model_dropdown, outputs=gr.Textbox(label="status"))
        with gr.Tab("Model Fine-Tuning"):
            gr.Markdown("Upload your custom dataset for model fine-tuning.")
            train_image_input = gr.File(label="Upload Training Images", file_count="multiple", type="filepath")
            train_label_input = gr.Textbox(label="Enter Corresponding Labels (comma-separated)")
            fine_tune_button = gr.Button("Fine-Tune Model")
            fine_tune_output = gr.Text(label="Training Status")
            fine_tune_button.click(fine_tune_model, inputs=[train_image_input, train_label_input],
                                   outputs=fine_tune_output)

    with gr.Tab("Image Classification"):
        gr.Markdown("Upload images for classification.")
        image_input = gr.File(label="Upload Images", file_count="multiple", type="filepath")
        output = gr.DataFrame(label="Classification Results", interactive=True)
        image_input.upload(batch_predict, inputs=image_input, outputs=output)

    with gr.Tab("Inventory"):
        gr.Markdown("Check current inventory.")
        inventory_display = gr.DataFrame(value=pd.DataFrame(columns=["Item", "Count", "Last Detected"]))
        gr.Button("Fetch Inventory").click(lambda: pd.DataFrame(inventory_data).T, outputs=inventory_display)

    with gr.Tab("Forecasting"):
        gr.Markdown("Forecast inventory levels for the next 7 days.")
        item_class_input = gr.Textbox(label="Enter Item Class")
        forecast_button = gr.Button("Forecast")
        forecast_output = gr.Text(label="Predicted Inventory Forecast")
        forecast_button.click(forecast_inventory, inputs=item_class_input, outputs=forecast_output)

    with gr.Tab("Inventory Dashboard"):
        with gr.Tab("Bar Chart"):
            bar_chart_image = gr.Image(type="filepath", label="Bar Chart")
            gr.Button("Generate Bar Chart").click(generate_bar_chart, outputs=bar_chart_image)

        with gr.Tab("Line Chart"):
            line_chart_image = gr.Image(type="filepath", label="Line Chart")
            gr.Button("Generate Line Chart").click(generate_line_chart, outputs=line_chart_image)

        with gr.Tab("Pie Chart"):
            pie_chart_image = gr.Image(type="filepath", label="Pie Chart")
            gr.Button("Generate Pie Chart").click(generate_pie_chart, outputs=pie_chart_image)

        with gr.Tab("Heatmap"):
            heatmap_image = gr.Image(type="filepath", label="Heatmap")
            gr.Button("Generate Heatmap").click(generate_heatmap, outputs=heatmap_image)

if __name__ == '__main__':
    app_thread = Thread(target=lambda: app.run(debug=True, use_reloader=False))
    app_thread.start()
    interface.launch(server_name="0.0.0.0", server_port=8080, root_path=proxy_prefix, share=True)