Spaces:
Build error
Build error
File size: 17,730 Bytes
3506b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import os
import json
import torch
import sqlite3
import gradio as gr
import faiss
import pandas as pd
from datetime import datetime
from PIL import Image
from flask import Flask, jsonify, request
from werkzeug.utils import secure_filename
from threading import Thread
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, AutoTokenizer, AutoModel, \
AutoModelForCausalLM
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
import numpy as np
import seaborn as sns
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torch import nn, optim
from torch.optim import lr_scheduler
from sklearn.preprocessing import LabelEncoder
# Initialize Flask app and models
app = Flask(__name__, static_folder="static")
# Constants
LOW_STOCK_THRESHOLD = 5 # Customize threshold as needed
DATABASE = 'uploaded_images.db'
# Available model options
MODEL_OPTIONS = {
"Google ViT (Base)": "google/vit-base-patch16-224",
"Google ViT (Large)": "google/vit-large-patch16-224",
"Microsoft ResNet50": "microsoft/resnet-50",
"Facebook ConvNeXt Tiny": "facebook/convnext-tiny-224",
"Microsoft Swin": "microsoft/swin-tiny-patch4-window7-224",
}
# Set default model
selected_model_name = MODEL_OPTIONS["Google ViT (Base)"]
feature_extractor = AutoFeatureExtractor.from_pretrained(selected_model_name)
model = AutoModelForImageClassification.from_pretrained(selected_model_name)
class_names = model.config.id2label
# Initialize inventory data
inventory_data = {}
# Initialize database
def init_db():
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS images (
id INTEGER PRIMARY KEY AUTOINCREMENT,
filename TEXT,
upload_time TEXT
)
""")
conn.commit()
conn.close()
init_db()
def plot_bar_chart(inventory_data):
# Get the list of items and their counts
items = list(inventory_data.keys())
counts = [inventory_data[item]["count"] for item in items]
# Extract only the first word from each item name
first_words = [item.split()[0] for item in items]
# Create the bar chart
fig, ax = plt.subplots(figsize=(8, 6))
ax.bar(first_words, counts, color="skyblue")
# Set titles and labels
ax.set_title("Inventory Counts")
ax.set_xlabel("Items")
ax.set_ylabel("Count")
# Save the chart as a PNG file
chart_path = "bar_chart.png"
plt.tight_layout()
plt.savefig(chart_path)
plt.close()
return chart_path
def plot_line_chart(inventory_data):
# Extract items, counts, and dates from inventory data
items = list(inventory_data.keys())
counts = [inventory_data[item]["count"] for item in items]
dates = [inventory_data[item]["last_detected"] for item in items]
# Convert string dates to pandas datetime objects
dates = pd.to_datetime(dates)
# Create a DataFrame with dates and counts
counts_df = pd.DataFrame({"Date": dates, "Count": counts})
counts_df.sort_values("Date", inplace=True)
# Format the 'Date' column into a human-readable format
counts_df["Date"] = counts_df["Date"].dt.strftime('%Y-%m-%d %H:%M:%S')
# Create the plot
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(counts_df["Date"], counts_df["Count"], marker="o", color="orange")
# Set the title and labels for the plot
ax.set_title("Stock Changes Over Time")
ax.set_xlabel("Date")
ax.set_ylabel("Stock Level")
# Save the plot as a PNG file
chart_path = "line_chart.png"
plt.xticks(rotation=45) # Rotate x-ticks for better readability
plt.tight_layout()
plt.savefig(chart_path)
plt.close()
return chart_path
def plot_pie_chart(inventory_data):
# Get the list of items and their counts
items = list(inventory_data.keys())
counts = [inventory_data[item]["count"] for item in items]
# Extract only the first word from each item name
first_words = [item.split()[0] for item in items]
# Create the pie chart
fig, ax = plt.subplots(figsize=(8, 6))
ax.pie(counts, labels=first_words, autopct='%1.1f%%', startangle=140, colors=plt.cm.Paired.colors)
# Set the title
ax.set_title("Product Category Breakdown")
# Save the chart as a PNG file
chart_path = "pie_chart.png"
plt.tight_layout()
plt.savefig(chart_path)
plt.close()
return chart_path
def plot_heatmap(inventory_data):
# Get the list of items
items = list(inventory_data.keys())
# Extract only the first word from each item name
first_words = [item.split()[0] for item in items]
# Create a matrix where the count is placed at the correct location
change_matrix = [[inventory_data[item]["count"] if item == other else 0 for other in items] for item in items]
# Create the heatmap
fig, ax = plt.subplots(figsize=(8, 6))
cax = ax.imshow(change_matrix, cmap="YlOrRd", interpolation='nearest')
# Set the labels on the x and y axes to the first words of the items
ax.set_xticks(range(len(items)))
ax.set_yticks(range(len(items)))
ax.set_xticklabels(first_words)
ax.set_yticklabels(first_words)
# Add a colorbar
fig.colorbar(cax)
# Set the title of the heatmap
ax.set_title("Stock Change Heatmap")
# Save the chart as a PNG file
chart_path = "heatmap.png"
plt.tight_layout()
plt.savefig(chart_path)
plt.close()
return chart_path
# Function to return the paths of the images
def generate_bar_chart():
return plot_bar_chart(inventory_data)
def generate_line_chart():
return plot_line_chart(inventory_data)
def generate_pie_chart():
return plot_pie_chart(inventory_data)
def generate_heatmap():
return plot_heatmap(inventory_data)
# Utility functions
def log_inventory_data(item_class):
try:
timestamp = datetime.now().isoformat()
# Initialize the inventory data for the item class if it's not present
if item_class not in inventory_data:
inventory_data[item_class] = {
"category": item_class,
"count": 0, # Initial count
"last_detected": None, # Timestamp of last detection
"history": [] # Track the historical counts over time
}
# Log the count and timestamp to the history
inventory_data[item_class]["history"].append({
"timestamp": timestamp, # Store the timestamp as a string
"count": inventory_data[item_class]["count"]
})
# Update the count of the item class
inventory_data[item_class]["count"] += 1
# Update the last detected timestamp
inventory_data[item_class]["last_detected"] = timestamp
# Optionally: Save the data to a file for persistence
with open("inventory_log.json", "w") as f:
json.dump(inventory_data, f, indent=4)
print(f"Inventory data logged for item class: {item_class}")
except Exception as e:
print(f"Error logging inventory data: {e}")
def check_stock_levels():
try:
for item, details in inventory_data.items():
if details["count"] < LOW_STOCK_THRESHOLD:
print(f"Low stock detected for {item}: {details['count']} items.")
except Exception as e:
print(f"Error checking stock levels: {e}")
def save_image_to_db(file):
filename = secure_filename(file.filename)
upload_time = datetime.now().isoformat()
file_path = os.path.join("uploads", filename)
file.save(file_path)
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("INSERT INTO images (filename, upload_time) VALUES (?, ?)", (filename, upload_time))
conn.commit()
conn.close()
def batch_predict(images):
results = []
try:
for image_file in images:
with Image.open(image_file.name) as image:
if image.mode != "RGB":
image = image.convert("RGB")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
predicted_class_id = torch.argmax(outputs.logits, dim=1).item()
item_class = class_names[predicted_class_id]
log_inventory_data(item_class) # Pass only the item_class argument
results.append({"Image": os.path.basename(image_file.name), "Classification": item_class})
except Exception as e:
return [{"Image": "Error", "Classification": str(e)}]
return pd.DataFrame(results)
def forecast_inventory(item_class, days=7):
"""Use linear regression for basic inventory forecasting."""
try:
# Get the historical data for the item class
if item_class not in inventory_data or not inventory_data[item_class]["history"]:
return {"error": f"No historical data for {item_class}."}
history = inventory_data[item_class]["history"]
timestamps = [datetime.fromisoformat(entry["timestamp"]) for entry in history]
counts = [entry["count"] for entry in history]
# Convert timestamps to days since the first entry
days_since_first_entry = [(timestamp - timestamps[0]).days for timestamp in timestamps]
# Apply linear regression to forecast the next `days` values
model = LinearRegression()
model.fit(np.array(days_since_first_entry).reshape(-1, 1), counts)
# Predict future inventory counts
future_days = np.array([days_since_first_entry[-1] + i for i in range(1, days + 1)]).reshape(-1, 1)
predictions = model.predict(future_days)
forecast = [{"day": i + 1, "predicted_count": int(predictions[i])} for i in range(days)]
return forecast
print(f"Inventory data logged for item class: {forecast}")
except Exception as e:
return {"error": f"Error in forecasting: {str(e)}"}
def change_model(selected_model_key):
try:
global feature_extractor, model, class_names
if selected_model_key not in MODEL_OPTIONS:
return "Error: Invalid model selection"
# Retrieve the model path (either pre-trained or fine-tuned)
selected_model_path = MODEL_OPTIONS[selected_model_key]
# Load the model from the specified path
feature_extractor = AutoFeatureExtractor.from_pretrained(selected_model_path)
model = AutoModelForImageClassification.from_pretrained(selected_model_path)
class_names = model.config.id2label
return f"Model changed to {selected_model_key}"
except Exception as e:
return f"Error changing model: {str(e)}"
# Define a custom dataset class
class CustomDataset(Dataset):
def __init__(self, images, labels, transform=None):
self.images = images
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = Image.open(self.images[idx]).convert("RGB")
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# Define transformations for image preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Function to preprocess and load data
def preprocess_data(train_images, train_labels):
dataset = CustomDataset(train_images, train_labels, transform=transform)
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
return dataloader
# Fine-tune the model with a custom dataset
def fine_tune_model(train_images, train_labels, model_name="custom_model"):
try:
# Convert image paths to a suitable format
train_images = [image.name for image in train_images] # list of image paths
# Check if labels need encoding
if isinstance(train_labels, str):
train_labels = train_labels.split(",") # Convert the comma-separated string to a list
# Encode labels if they are not integers
label_encoder = LabelEncoder()
train_labels = label_encoder.fit_transform(train_labels)
# Load the model and prepare for fine-tuning
global model
model = AutoModelForImageClassification.from_pretrained(selected_model_name)
# Modify the classifier layer for the new dataset
num_labels = len(set(train_labels)) # Number of unique labels
model.classifier = nn.Linear(model.config.hidden_size, num_labels)
# Prepare data loader
dataloader = preprocess_data(train_images, train_labels)
# Define loss function, optimizer, and learning rate scheduler
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
# Training loop
num_epochs = 50 # Set the number of epochs
model.train() # Set model to training mode
for epoch in range(num_epochs):
running_loss = 0.0
for inputs, labels in dataloader:
optimizer.zero_grad()
# Forward pass
outputs = model(inputs)
logits = outputs.logits if hasattr(outputs, "logits") else outputs # Handle outputs
# Calculate loss
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
scheduler.step()
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(dataloader)}")
# return f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(dataloader)}"
# Save the fine-tuned model
fine_tuned_model_path = f"models/{model_name}" # Save path
model.save_pretrained(fine_tuned_model_path)
print(f"Fine-tuned model saved to {fine_tuned_model_path}")
# Dynamically add the fine-tuned model to the model selection
MODEL_OPTIONS[model_name] = fine_tuned_model_path
return f"Fine-tuned model {model_name} has been added successfully!"
except Exception as e:
return f"Error fine-tuning the model: {str(e)}"
proxy_prefix = os.environ.get("PROXY_PREFIX")
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("## VisionTrack - Smart Inventory Management and Analysis System")
with gr.Tab("Model Selection/Fine-Tuning"):
with gr.Tab("Select Model"):
gr.Markdown("Choose a model for image classification.")
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model",
value="Google ViT (Base)")
model_dropdown.change(change_model, inputs=model_dropdown, outputs=gr.Textbox(label="status"))
with gr.Tab("Model Fine-Tuning"):
gr.Markdown("Upload your custom dataset for model fine-tuning.")
train_image_input = gr.File(label="Upload Training Images", file_count="multiple", type="filepath")
train_label_input = gr.Textbox(label="Enter Corresponding Labels (comma-separated)")
fine_tune_button = gr.Button("Fine-Tune Model")
fine_tune_output = gr.Text(label="Training Status")
fine_tune_button.click(fine_tune_model, inputs=[train_image_input, train_label_input],
outputs=fine_tune_output)
with gr.Tab("Image Classification"):
gr.Markdown("Upload images for classification.")
image_input = gr.File(label="Upload Images", file_count="multiple", type="filepath")
output = gr.DataFrame(label="Classification Results", interactive=True)
image_input.upload(batch_predict, inputs=image_input, outputs=output)
with gr.Tab("Inventory"):
gr.Markdown("Check current inventory.")
inventory_display = gr.DataFrame(value=pd.DataFrame(columns=["Item", "Count", "Last Detected"]))
gr.Button("Fetch Inventory").click(lambda: pd.DataFrame(inventory_data).T, outputs=inventory_display)
with gr.Tab("Forecasting"):
gr.Markdown("Forecast inventory levels for the next 7 days.")
item_class_input = gr.Textbox(label="Enter Item Class")
forecast_button = gr.Button("Forecast")
forecast_output = gr.Text(label="Predicted Inventory Forecast")
forecast_button.click(forecast_inventory, inputs=item_class_input, outputs=forecast_output)
with gr.Tab("Inventory Dashboard"):
with gr.Tab("Bar Chart"):
bar_chart_image = gr.Image(type="filepath", label="Bar Chart")
gr.Button("Generate Bar Chart").click(generate_bar_chart, outputs=bar_chart_image)
with gr.Tab("Line Chart"):
line_chart_image = gr.Image(type="filepath", label="Line Chart")
gr.Button("Generate Line Chart").click(generate_line_chart, outputs=line_chart_image)
with gr.Tab("Pie Chart"):
pie_chart_image = gr.Image(type="filepath", label="Pie Chart")
gr.Button("Generate Pie Chart").click(generate_pie_chart, outputs=pie_chart_image)
with gr.Tab("Heatmap"):
heatmap_image = gr.Image(type="filepath", label="Heatmap")
gr.Button("Generate Heatmap").click(generate_heatmap, outputs=heatmap_image)
if __name__ == '__main__':
app_thread = Thread(target=lambda: app.run(debug=True, use_reloader=False))
app_thread.start()
interface.launch(server_name="0.0.0.0", server_port=8080, root_path=proxy_prefix, share=True)
|