Spaces:
Running
Running
File size: 18,364 Bytes
7747457 67b666f 7747457 67b666f 7747457 87a07f1 e6e97d2 1c44592 e6e97d2 d6b851c 21f2eeb 36c019e 21f2eeb 36c019e 21f2eeb 36c019e 21f2eeb d6b851c 36c019e 21f2eeb d6b851c 36c019e 21f2eeb 36c019e 21f2eeb 36c019e ef34466 e6e97d2 1c44592 e6e97d2 1c44592 e6e97d2 1c44592 e6e97d2 1d134b3 87a07f1 e6e97d2 7747457 0e4f22b 7747457 87a07f1 25480ea a337459 87a07f1 a337459 87a07f1 e6e97d2 87a07f1 eac7093 87a07f1 7747457 451ef44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import gradio as gr
import random
from recurrentgpt import RecurrentGPT
from human_simulator import Human
from sentence_transformers import SentenceTransformer
from utils import get_init, parse_instructions
import re
# from urllib.parse import quote_plus
# from pymongo import MongoClient
# uri = "mongodb://%s:%s@%s" % (quote_plus("xxx"),
# quote_plus("xxx"), "localhost")
# client = MongoClient(uri, maxPoolSize=None)
# db = client.recurrentGPT_db
# log = db.log
_CACHE = {}
# Build the semantic search model
embedder = SentenceTransformer('multi-qa-mpnet-base-cos-v1')
def init_prompt(novel_type, description):
if description == "":
description = ""
else:
description = " about " + description
return f"""
Please write a {novel_type} novel{description} with 50 chapters. Follow the format below precisely:
Begin with the name of the novel.
Next, write an outline for the first chapter. The outline should describe the background and the beginning of the novel.
Write the first three paragraphs with their indication of the novel based on your outline. Write in a novelistic style and take your time to set the scene.
Write a summary that captures the key information of the three paragraphs.
Finally, write three different instructions for what to write next, each containing around five sentences. Each instruction should present a possible, interesting continuation of the story.
The output format should follow these guidelines:
Name: <name of the novel>
Outline: <outline for the first chapter>
Paragraph 1: <content for paragraph 1>
Paragraph 2: <content for paragraph 2>
Paragraph 3: <content for paragraph 3>
Summary: <content of summary>
Instruction 1: <content for instruction 1>
Instruction 2: <content for instruction 2>
Instruction 3: <content for instruction 3>
Make sure to be precise and follow the output format strictly.
"""
def init(novel_type, description, request: gr.Request):
if novel_type == "":
novel_type = "Science Fiction"
global _CACHE
cookie = request.headers['cookie']
print(cookie)
cookie = cookie.split('; _gat_gtag')[0]
print(cookie)
# prepare first init
init_paragraphs = get_init(text=init_prompt(novel_type,description))
# print(init_paragraphs)
start_input_to_human = {
'output_paragraph': init_paragraphs['Paragraph 3'],
'input_paragraph': '\n\n'.join([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']]),
'output_memory': init_paragraphs['Summary'],
"output_instruction": [init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']]
}
_CACHE[cookie] = {"start_input_to_human": start_input_to_human,
"init_paragraphs": init_paragraphs}
written_paras = f"""Title: {init_paragraphs['name']}
Outline: {init_paragraphs['Outline']}
Paragraphs:
{start_input_to_human['input_paragraph']}"""
long_memory = parse_instructions([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']])
# short memory, long memory, current written paragraphs, 3 next instructions
return start_input_to_human['output_memory'], long_memory, written_paras, init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']
def step(short_memory, long_memory, instruction1, instruction2, instruction3, current_paras, request: gr.Request, ):
if current_paras == "":
return "", "", "", "", "", ""
global _CACHE
# print(list(_CACHE.keys()))
# print(request.headers.get('cookie'))
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
cache = _CACHE[cookie]
if "writer" not in cache:
start_input_to_human = cache["start_input_to_human"]
start_input_to_human['output_instruction'] = [
instruction1, instruction2, instruction3]
init_paragraphs = cache["init_paragraphs"]
human = Human(input=start_input_to_human,
memory=None, embedder=embedder)
human.step()
start_short_memory = init_paragraphs['Summary']
writer_start_input = human.output
# Init writerGPT
writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[
init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder)
cache["writer"] = writer
cache["human"] = human
writer.step()
else:
human = cache["human"]
writer = cache["writer"]
output = writer.output
output['output_memory'] = short_memory
#randomly select one instruction out of three
instruction_index = random.randint(0,2)
output['output_instruction'] = [instruction1, instruction2, instruction3][instruction_index]
human.input = output
human.step()
writer.input = human.output
writer.step()
long_memory = [[v] for v in writer.long_memory]
# short memory, long memory, current written paragraphs, 3 next instructions
return writer.output['output_memory'], long_memory, current_paras + '\n\n' + writer.output['input_paragraph'], human.output['output_instruction'], *writer.output['output_instruction']
def controled_step(short_memory, long_memory, selected_instruction, current_paras, request: gr.Request, ):
if current_paras == "":
return "", "", "", "", "", ""
global _CACHE
# print(list(_CACHE.keys()))
# print(request.headers.get('cookie'))
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
cache = _CACHE[cookie]
if "writer" not in cache:
start_input_to_human = cache["start_input_to_human"]
start_input_to_human['output_instruction'] = selected_instruction
init_paragraphs = cache["init_paragraphs"]
human = Human(input=start_input_to_human,
memory=None, embedder=embedder)
human.step()
start_short_memory = init_paragraphs['Summary']
writer_start_input = human.output
# Init writerGPT
writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[
init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder)
cache["writer"] = writer
cache["human"] = human
writer.step()
else:
human = cache["human"]
writer = cache["writer"]
output = writer.output
output['output_memory'] = short_memory
output['output_instruction'] = selected_instruction
human.input = output
human.step()
writer.input = human.output
writer.step()
# short memory, long memory, current written paragraphs, 3 next instructions
return writer.output['output_memory'], parse_instructions(writer.long_memory), current_paras + '\n\n' + writer.output['input_paragraph'], *writer.output['output_instruction']
# SelectData is a subclass of EventData
def on_select(instruction1, instruction2, instruction3, evt: gr.SelectData):
selected_plan = int(evt.value.replace("Instruction ", ""))
selected_plan = [instruction1, instruction2, instruction3][selected_plan-1]
return selected_plan
#----------------#
# Grammar metrics
import re
from textstat import textstat
#def pre_process_text(text):
# sentences_list = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
# # Split the elements of the list by newline characters
# split_sentences = []
# for sentence in sentences_list:
# split_sentences.extend(re.split(r'\n+', sentence))
# # Remove empty elements
# cleaned_sentences = [sentence for sentence in split_sentences if sentence.strip()]
# sentences_number = len(cleaned_sentences)
# return cleaned_sentences, sentences_number
# Function to clean the sentences list and return words only
#def extract_words(sentences):
# words = []
# for sentence in sentences:
# # Extract words using regex, ignoring special characters
# words.extend(re.findall(r'\b\w+\b', sentence))
# return words
#def count_syllables(word):
# return len(re.findall(r'[aeiouyAEIOUY]', word))
#def flesch_kincaid_grade_level(text):
# sentences, sentences_count = pre_process_text(text)
# words = extract_words(sentences)
# syllables = sum([count_syllables(word) for word in text.split()])
#
# if sentences_count == 0 or words == 0:
# return float('nan') # Return NaN to indicate an error
# return 0.39 * (words / sentences_count) + 11.8 * (syllables / words) - 15.59
#def flesch_reading_ease(text):
# sentences, sentences_count = pre_process_text(text)
# words = extract_words(sentences)
# syllables = sum([count_syllables(word) for word in words])
#
# if sentences_count == 0 or words == 0:
# return float('nan') # Return NaN to indicate an error
# return 206.835 - 1.015 * (words / sentences_count) - 84.6 * (syllables / words)
#def gunning_fog_index(text):
# sentences, sentences_count = pre_process_text(text)
# words = extract_words(sentences)
# complex_words = len([word for word in words if count_syllables(word) >= 3])
#
# if sentences_count == 0 or words == 0:
# return float('nan') # Return NaN to indicate an error
# return 0.4 * ((words / sentences_count) + 100 * (complex_words / words))
def pre_process_text(text):
# Normalize line breaks and whitespace
text = re.sub(r'\n\s*\n', '\n\n', text.strip())
# Split the text into sections
sections = re.split(r'\n{2,}', text)
print("Sections:", sections)
# Remove empty strings from the split result
sections = [section.strip() for section in sections if section.strip()]
print("Non-empty Sections:", sections)
# Combine sections into a single string
combined_text = ' '.join(sections)
print("Combined Text:", combined_text)
# Split the text into sentences
sentences_list = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', combined_text)
print("Sentences List:", sentences_list)
# Split the elements of the list by newline characters
split_sentences = []
for sentence in sentences_list:
split_sentences.extend(re.split(r'\n+', sentence))
print("Split Sentences:", split_sentences)
# Remove empty elements
cleaned_sentences = [sentence for sentence in split_sentences if sentence.strip()]
print("Cleaned Sentences:", cleaned_sentences)
combined_cleaned_text = " ".join(cleaned_sentences)
print("Combined Cleaned Text:", combined_cleaned_text)
return combined_cleaned_text
def flesch_kincaid_grade_level(text):
sentences = pre_process_text(text)
return textstat.flesch_kincaid_grade(sentences)
def flesch_reading_ease(text):
sentences = pre_process_text(text)
return textstat.flesch_reading_ease(sentences)
def gunning_fog_index(text):
sentences = pre_process_text(text)
return textstat.gunning_fog(sentences)
def calculate_readability_metrics(text):
fk_grade_level = flesch_kincaid_grade_level(text)
fk_reading_ease = flesch_reading_ease(text)
gunning_fog = gunning_fog_index(text)
return fk_grade_level, fk_reading_ease, gunning_fog
#-------------#
with gr.Blocks(title="RecurrentGPT", css="footer {visibility: hidden}", theme='sudeepshouche/minimalist') as demo:
gr.Markdown(
"""
# RecurrentGPT
Interactive Generation of (Arbitrarily) Long Texts with Human-in-the-Loop
""")
with gr.Tab("Auto-Generation"):
with gr.Row():
with gr.Column():
with gr.Box():
with gr.Row():
with gr.Column(scale=1, min_width=200):
novel_type = gr.Textbox(
label="Novel Type", placeholder="e.g. science fiction")
with gr.Column(scale=2, min_width=400):
description = gr.Textbox(label="Description")
btn_init = gr.Button(
"Init Novel Generation", variant="primary")
gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
"Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
written_paras = gr.Textbox(
label="Written Paragraphs (editable)", max_lines=21, lines=21)
with gr.Column():
with gr.Box():
gr.Markdown("### Memory Module\n")
short_memory = gr.Textbox(
label="Short-Term Memory (editable)", max_lines=3, lines=3)
long_memory = gr.Textbox(
label="Long-Term Memory (editable)", max_lines=6, lines=6)
# long_memory = gr.Dataframe(
# # label="Long-Term Memory (editable)",
# headers=["Long-Term Memory (editable)"],
# datatype=["str"],
# row_count=3,
# max_rows=3,
# col_count=(1, "fixed"),
# type="array",
# )
with gr.Box():
gr.Markdown("### Instruction Module\n")
with gr.Row():
instruction1 = gr.Textbox(
label="Instruction 1 (editable)", max_lines=4, lines=4)
instruction2 = gr.Textbox(
label="Instruction 2 (editable)", max_lines=4, lines=4)
instruction3 = gr.Textbox(
label="Instruction 3 (editable)", max_lines=4, lines=4)
selected_plan = gr.Textbox(
label="Revised Instruction (from last step)", max_lines=2, lines=2)
btn_step = gr.Button("Next Step", variant="primary")
btn_init.click(init, inputs=[novel_type, description], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
btn_step.click(step, inputs=[short_memory, long_memory, instruction1, instruction2, instruction3, written_paras], outputs=[
short_memory, long_memory, written_paras, selected_plan, instruction1, instruction2, instruction3])
with gr.Tab("Human-in-the-Loop"):
with gr.Row():
with gr.Column():
with gr.Box():
with gr.Row():
with gr.Column(scale=1, min_width=200):
novel_type = gr.Textbox(
label="Novel Type", placeholder="e.g. science fiction")
with gr.Column(scale=2, min_width=400):
description = gr.Textbox(label="Description")
btn_init = gr.Button(
"Init Novel Generation", variant="primary")
gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
"Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
written_paras = gr.Textbox(
label="Written Paragraphs (editable)", max_lines=23, lines=23)
with gr.Column():
with gr.Box():
gr.Markdown("### Memory Module\n")
short_memory = gr.Textbox(
label="Short-Term Memory (editable)", max_lines=3, lines=3)
long_memory = gr.Textbox(
label="Long-Term Memory (editable)", max_lines=6, lines=6)
with gr.Box():
gr.Markdown("### Instruction Module\n")
with gr.Row():
instruction1 = gr.Textbox(
label="Instruction 1", max_lines=3, lines=3, interactive=False)
instruction2 = gr.Textbox(
label="Instruction 2", max_lines=3, lines=3, interactive=False)
instruction3 = gr.Textbox(
label="Instruction 3", max_lines=3, lines=3, interactive=False)
with gr.Row():
with gr.Column(scale=1, min_width=100):
selected_plan = gr.Radio(["Instruction 1", "Instruction 2", "Instruction 3"], label="Instruction Selection",)
# info="Select the instruction you want to revise and use for the next step generation.")
with gr.Column(scale=3, min_width=300):
selected_instruction = gr.Textbox(
label="Selected Instruction (editable)", max_lines=5, lines=5)
btn_step = gr.Button("Next Step", variant="primary")
btn_init.click(init, inputs=[novel_type, description], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
btn_step.click(controled_step, inputs=[short_memory, long_memory, selected_instruction, written_paras], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
selected_plan.select(on_select, inputs=[
instruction1, instruction2, instruction3], outputs=[selected_instruction])
with gr.Tab("Metrics"):
with gr.Row():
with gr.Column():
with gr.Box():
gr.Markdown("### Readability Metrics\n")
fk_grade = gr.Number(label="Flesch-Kincaid Grade Level")
fr_ease = gr.Number(label="Flesch Reading Ease")
g_fog = gr.Number(label="Gunning Fog Index")
calculate_button = gr.Button("Calculate Metrics")
def update_metrics(text):
grade, ease, fog = calculate_readability_metrics(text)
return grade, ease, fog
calculate_button.click(fn=update_metrics, inputs=[written_paras], outputs=[fk_grade, fr_ease, g_fog])
demo.queue(concurrency_count=1)
if __name__ == "__main__":
demo.launch() |