File size: 18,364 Bytes
7747457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67b666f
7747457
67b666f
7747457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a07f1
 
e6e97d2
1c44592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e97d2
d6b851c
21f2eeb
 
 
 
 
36c019e
21f2eeb
 
 
36c019e
21f2eeb
 
36c019e
 
 
 
 
 
21f2eeb
d6b851c
 
 
 
36c019e
21f2eeb
d6b851c
 
36c019e
21f2eeb
36c019e
 
21f2eeb
36c019e
ef34466
e6e97d2
1c44592
 
e6e97d2
 
1c44592
 
e6e97d2
 
1c44592
 
 
e6e97d2
1d134b3
 
 
87a07f1
e6e97d2
 
7747457
0e4f22b
7747457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a07f1
 
25480ea
a337459
 
 
 
 
87a07f1
a337459
87a07f1
 
e6e97d2
87a07f1
 
eac7093
87a07f1
7747457
 
 
451ef44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import gradio as gr
import random
from recurrentgpt import RecurrentGPT
from human_simulator import Human
from sentence_transformers import SentenceTransformer
from utils import get_init, parse_instructions
import re

# from urllib.parse import quote_plus
# from pymongo import MongoClient

# uri = "mongodb://%s:%s@%s" % (quote_plus("xxx"),
#                               quote_plus("xxx"), "localhost")
# client = MongoClient(uri, maxPoolSize=None)
# db = client.recurrentGPT_db
# log = db.log

_CACHE = {}


# Build the semantic search model
embedder = SentenceTransformer('multi-qa-mpnet-base-cos-v1')

def init_prompt(novel_type, description):
    if description == "":
        description = ""
    else:
        description = " about " + description
    return f"""
Please write a {novel_type} novel{description} with 50 chapters. Follow the format below precisely:

Begin with the name of the novel.
Next, write an outline for the first chapter. The outline should describe the background and the beginning of the novel.
Write the first three paragraphs with their indication of the novel based on your outline. Write in a novelistic style and take your time to set the scene.
Write a summary that captures the key information of the three paragraphs.
Finally, write three different instructions for what to write next, each containing around five sentences. Each instruction should present a possible, interesting continuation of the story.
The output format should follow these guidelines:
Name: <name of the novel>
Outline: <outline for the first chapter>
Paragraph 1: <content for paragraph 1>
Paragraph 2: <content for paragraph 2>
Paragraph 3: <content for paragraph 3>
Summary: <content of summary>
Instruction 1: <content for instruction 1>
Instruction 2: <content for instruction 2>
Instruction 3: <content for instruction 3>

Make sure to be precise and follow the output format strictly.

"""

def init(novel_type, description, request: gr.Request):
    if novel_type == "":
        novel_type = "Science Fiction"
    global _CACHE
    cookie = request.headers['cookie']
    print(cookie)
    cookie = cookie.split('; _gat_gtag')[0]
    print(cookie)
    # prepare first init
    init_paragraphs = get_init(text=init_prompt(novel_type,description))
    # print(init_paragraphs)
    start_input_to_human = {
        'output_paragraph': init_paragraphs['Paragraph 3'],
        'input_paragraph': '\n\n'.join([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']]),
        'output_memory': init_paragraphs['Summary'],
        "output_instruction": [init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']]
    }

    _CACHE[cookie] = {"start_input_to_human": start_input_to_human,
                      "init_paragraphs": init_paragraphs}
    written_paras = f"""Title: {init_paragraphs['name']}

Outline: {init_paragraphs['Outline']}

Paragraphs:

{start_input_to_human['input_paragraph']}"""
    long_memory = parse_instructions([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']])
    # short memory, long memory, current written paragraphs, 3 next instructions
    return start_input_to_human['output_memory'], long_memory, written_paras, init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']

def step(short_memory, long_memory, instruction1, instruction2, instruction3, current_paras, request: gr.Request, ):
    if current_paras == "":
        return "", "", "", "", "", ""
    global _CACHE
    # print(list(_CACHE.keys()))
    # print(request.headers.get('cookie'))
    cookie = request.headers['cookie']
    cookie = cookie.split('; _gat_gtag')[0]
    cache = _CACHE[cookie]

    if "writer" not in cache:
        start_input_to_human = cache["start_input_to_human"]
        start_input_to_human['output_instruction'] = [
            instruction1, instruction2, instruction3]
        init_paragraphs = cache["init_paragraphs"]
        human = Human(input=start_input_to_human,
                      memory=None, embedder=embedder)
        human.step()
        start_short_memory = init_paragraphs['Summary']
        writer_start_input = human.output

        # Init writerGPT
        writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[
            init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder)
        cache["writer"] = writer
        cache["human"] = human
        writer.step()
    else:
        human = cache["human"]
        writer = cache["writer"]
        output = writer.output
        output['output_memory'] = short_memory
        #randomly select one instruction out of three
        instruction_index = random.randint(0,2)
        output['output_instruction'] = [instruction1, instruction2, instruction3][instruction_index]
        human.input = output
        human.step()
        writer.input = human.output
        writer.step()

    long_memory = [[v] for v in writer.long_memory]
    # short memory, long memory, current written paragraphs, 3 next instructions
    return writer.output['output_memory'], long_memory, current_paras + '\n\n' + writer.output['input_paragraph'], human.output['output_instruction'], *writer.output['output_instruction']


def controled_step(short_memory, long_memory, selected_instruction, current_paras, request: gr.Request, ):
    if current_paras == "":
        return "", "", "", "", "", ""
    global _CACHE
    # print(list(_CACHE.keys()))
    # print(request.headers.get('cookie'))
    cookie = request.headers['cookie']
    cookie = cookie.split('; _gat_gtag')[0]
    cache = _CACHE[cookie]
    if "writer" not in cache:
        start_input_to_human = cache["start_input_to_human"]
        start_input_to_human['output_instruction'] = selected_instruction
        init_paragraphs = cache["init_paragraphs"]
        human = Human(input=start_input_to_human,
                      memory=None, embedder=embedder)
        human.step()
        start_short_memory = init_paragraphs['Summary']
        writer_start_input = human.output

        # Init writerGPT
        writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[
            init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder)
        cache["writer"] = writer
        cache["human"] = human
        writer.step()
    else:
        human = cache["human"]
        writer = cache["writer"]
        output = writer.output
        output['output_memory'] = short_memory
        output['output_instruction'] = selected_instruction
        human.input = output
        human.step()
        writer.input = human.output
        writer.step()

    # short memory, long memory, current written paragraphs, 3 next instructions
    return writer.output['output_memory'], parse_instructions(writer.long_memory), current_paras + '\n\n' + writer.output['input_paragraph'], *writer.output['output_instruction']


# SelectData is a subclass of EventData
def on_select(instruction1, instruction2, instruction3, evt: gr.SelectData):
    selected_plan = int(evt.value.replace("Instruction ", ""))
    selected_plan = [instruction1, instruction2, instruction3][selected_plan-1]
    return selected_plan

#----------------#
# Grammar metrics
import re
from textstat import textstat

#def pre_process_text(text):
#    sentences_list = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
#    # Split the elements of the list by newline characters
#    split_sentences = []
#    for sentence in sentences_list:
#        split_sentences.extend(re.split(r'\n+', sentence))
#    # Remove empty elements
#    cleaned_sentences = [sentence for sentence in split_sentences if sentence.strip()]
#    sentences_number = len(cleaned_sentences)
#    return cleaned_sentences, sentences_number

# Function to clean the sentences list and return words only
#def extract_words(sentences):
#    words = []
#    for sentence in sentences:
#        # Extract words using regex, ignoring special characters
#        words.extend(re.findall(r'\b\w+\b', sentence))
#    return words

#def count_syllables(word):
#    return len(re.findall(r'[aeiouyAEIOUY]', word))

#def flesch_kincaid_grade_level(text):
#    sentences, sentences_count = pre_process_text(text)
#    words = extract_words(sentences)
#    syllables = sum([count_syllables(word) for word in text.split()])
#
#    if sentences_count == 0 or words == 0:
#        return float('nan')  # Return NaN to indicate an error
#    return 0.39 * (words / sentences_count) + 11.8 * (syllables / words) - 15.59

#def flesch_reading_ease(text):
#    sentences, sentences_count = pre_process_text(text)
#    words = extract_words(sentences)
#    syllables = sum([count_syllables(word) for word in words])
#
#    if sentences_count == 0 or words == 0:
#        return float('nan')  # Return NaN to indicate an error
#   return 206.835 - 1.015 * (words / sentences_count) - 84.6 * (syllables / words)

#def gunning_fog_index(text):
#    sentences, sentences_count = pre_process_text(text)
#    words = extract_words(sentences)
#    complex_words = len([word for word in words if count_syllables(word) >= 3])
#
#    if sentences_count == 0 or words == 0:
#        return float('nan')  # Return NaN to indicate an error
#    return 0.4 * ((words / sentences_count) + 100 * (complex_words / words))

def pre_process_text(text):
    # Normalize line breaks and whitespace
    text = re.sub(r'\n\s*\n', '\n\n', text.strip())

    # Split the text into sections
    sections = re.split(r'\n{2,}', text)
    print("Sections:", sections)

    # Remove empty strings from the split result
    sections = [section.strip() for section in sections if section.strip()]
    print("Non-empty Sections:", sections)

    # Combine sections into a single string
    combined_text = ' '.join(sections)
    print("Combined Text:", combined_text)

    # Split the text into sentences
    sentences_list = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', combined_text)
    print("Sentences List:", sentences_list)

    # Split the elements of the list by newline characters
    split_sentences = []
    for sentence in sentences_list:
        split_sentences.extend(re.split(r'\n+', sentence))
    print("Split Sentences:", split_sentences)

    # Remove empty elements
    cleaned_sentences = [sentence for sentence in split_sentences if sentence.strip()]
    print("Cleaned Sentences:", cleaned_sentences)

    combined_cleaned_text = " ".join(cleaned_sentences)
    print("Combined Cleaned Text:", combined_cleaned_text)

    return combined_cleaned_text

def flesch_kincaid_grade_level(text):
    sentences = pre_process_text(text)
    return textstat.flesch_kincaid_grade(sentences)

def flesch_reading_ease(text):
    sentences = pre_process_text(text)
    return textstat.flesch_reading_ease(sentences)

def gunning_fog_index(text):
    sentences = pre_process_text(text)
    return textstat.gunning_fog(sentences)
    
def calculate_readability_metrics(text):
    fk_grade_level = flesch_kincaid_grade_level(text)
    fk_reading_ease = flesch_reading_ease(text)
    gunning_fog = gunning_fog_index(text)
    
    return fk_grade_level, fk_reading_ease, gunning_fog
#-------------#

with gr.Blocks(title="RecurrentGPT", css="footer {visibility: hidden}", theme='sudeepshouche/minimalist') as demo:
    gr.Markdown(
        """
    # RecurrentGPT
    Interactive Generation of (Arbitrarily) Long Texts with Human-in-the-Loop
    """)
    with gr.Tab("Auto-Generation"):
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    with gr.Row():
                        with gr.Column(scale=1, min_width=200):
                            novel_type = gr.Textbox(
                                label="Novel Type", placeholder="e.g. science fiction")
                        with gr.Column(scale=2, min_width=400):
                            description = gr.Textbox(label="Description")
                btn_init = gr.Button(
                    "Init Novel Generation", variant="primary")
                gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
                            "Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
                written_paras = gr.Textbox(
                    label="Written Paragraphs (editable)", max_lines=21, lines=21)
            with gr.Column():
                with gr.Box():
                    gr.Markdown("### Memory Module\n")
                    short_memory = gr.Textbox(
                        label="Short-Term Memory (editable)", max_lines=3, lines=3)
                    long_memory = gr.Textbox(
                        label="Long-Term Memory (editable)", max_lines=6, lines=6)
                    # long_memory = gr.Dataframe(
                    #     # label="Long-Term Memory (editable)",
                    #     headers=["Long-Term Memory (editable)"],
                    #     datatype=["str"],
                    #     row_count=3,
                    #     max_rows=3,
                    #     col_count=(1, "fixed"),
                    #     type="array",
                    # )
                with gr.Box():
                    gr.Markdown("### Instruction Module\n")
                    with gr.Row():
                        instruction1 = gr.Textbox(
                            label="Instruction 1 (editable)", max_lines=4, lines=4)
                        instruction2 = gr.Textbox(
                            label="Instruction 2 (editable)", max_lines=4, lines=4)
                        instruction3 = gr.Textbox(
                            label="Instruction 3 (editable)", max_lines=4, lines=4)
                    selected_plan = gr.Textbox(
                        label="Revised Instruction (from last step)", max_lines=2, lines=2)

                btn_step = gr.Button("Next Step", variant="primary")

        btn_init.click(init, inputs=[novel_type, description], outputs=[
            short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
        btn_step.click(step, inputs=[short_memory, long_memory, instruction1, instruction2, instruction3, written_paras], outputs=[
            short_memory, long_memory, written_paras, selected_plan, instruction1, instruction2, instruction3])

    with gr.Tab("Human-in-the-Loop"):
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    with gr.Row():
                        with gr.Column(scale=1, min_width=200):
                            novel_type = gr.Textbox(
                                label="Novel Type", placeholder="e.g. science fiction")
                        with gr.Column(scale=2, min_width=400):
                            description = gr.Textbox(label="Description")
                btn_init = gr.Button(
                    "Init Novel Generation", variant="primary")
                gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
                            "Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
                written_paras = gr.Textbox(
                    label="Written Paragraphs (editable)", max_lines=23, lines=23)
            with gr.Column():
                with gr.Box():
                    gr.Markdown("### Memory Module\n")
                    short_memory = gr.Textbox(
                        label="Short-Term Memory (editable)", max_lines=3, lines=3)
                    long_memory = gr.Textbox(
                        label="Long-Term Memory (editable)", max_lines=6, lines=6)
                with gr.Box():
                    gr.Markdown("### Instruction Module\n")
                    with gr.Row():
                        instruction1 = gr.Textbox(
                            label="Instruction 1", max_lines=3, lines=3, interactive=False)
                        instruction2 = gr.Textbox(
                            label="Instruction 2", max_lines=3, lines=3, interactive=False)
                        instruction3 = gr.Textbox(
                            label="Instruction 3", max_lines=3, lines=3, interactive=False)
                    with gr.Row():
                        with gr.Column(scale=1, min_width=100):
                            selected_plan = gr.Radio(["Instruction 1", "Instruction 2", "Instruction 3"], label="Instruction Selection",)
                                                    #  info="Select the instruction you want to revise and use for the next step generation.")
                        with gr.Column(scale=3, min_width=300):
                            selected_instruction = gr.Textbox(
                                label="Selected Instruction (editable)", max_lines=5, lines=5)

                btn_step = gr.Button("Next Step", variant="primary")

        btn_init.click(init, inputs=[novel_type, description], outputs=[
            short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
        btn_step.click(controled_step, inputs=[short_memory, long_memory, selected_instruction, written_paras], outputs=[
            short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
        selected_plan.select(on_select, inputs=[
                             instruction1, instruction2, instruction3], outputs=[selected_instruction])
    with gr.Tab("Metrics"):
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    gr.Markdown("### Readability Metrics\n")
                    fk_grade = gr.Number(label="Flesch-Kincaid Grade Level")
                    fr_ease = gr.Number(label="Flesch Reading Ease")
                    g_fog = gr.Number(label="Gunning Fog Index")
            
                    calculate_button = gr.Button("Calculate Metrics")
            
            def update_metrics(text):
                grade, ease, fog = calculate_readability_metrics(text)
                return grade, ease, fog
            
            calculate_button.click(fn=update_metrics, inputs=[written_paras], outputs=[fk_grade, fr_ease, g_fog])
    
    demo.queue(concurrency_count=1)

if __name__ == "__main__":
    demo.launch()