File size: 6,672 Bytes
7a6df75
 
 
 
 
19d09c1
9563130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6df75
 
 
 
 
 
 
 
 
 
9563130
 
10f3d68
9563130
19d09c1
 
 
 
 
7a6df75
10f3d68
 
 
 
 
7a6df75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d09c1
 
7a6df75
 
 
 
 
 
9563130
 
19d09c1
10f3d68
 
9563130
 
 
 
 
 
 
 
 
 
 
 
19d09c1
 
 
 
 
 
7fe1886
590fea3
10f3d68
9563130
 
 
 
10f3d68
 
 
 
9563130
 
19d09c1
 
9563130
7a6df75
 
 
 
 
 
 
b8ff31e
7a6df75
 
 
 
 
 
 
b8ff31e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from lm_eval.api.task import Task
from lm_eval.api.instance import Instance
from lm_eval.api.registry import register_task
from lm_eval.api.metrics import mean

import torch
import sacrebleu
from rouge_score import rouge_scorer, scoring


def bleu(refs, preds):
    """
    Returns `t5` style BLEU scores. See the related implementation:
    https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L41

    :param refs:
        A `list` of `list` of reference `str`s.
    :param preds:
        A `list` of predicted `str`s.
    """
    score = sacrebleu.corpus_bleu(preds, refs, smooth_method="exp", smooth_value=0.0, force=False,
                                  lowercase=False, tokenize="intl", use_effective_order=False).score
    return score


def rouge(refs, preds):
    """
    Returns `t5` style ROUGE scores. See the related implementation:
    https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L68

    :param refs:
        A `list` of reference `strs`.
    :param preds:
        A `list` of predicted `strs`.
    """
    rouge_types = ["rouge1", "rouge2", "rougeLsum"]
    scorer = rouge_scorer.RougeScorer(rouge_types)
    # Add newlines between sentences to correctly compute `rougeLsum`.

    def _prepare_summary(summary):
        summary = summary.replace(" . ", ".\n")
        return summary

    # Accumulate confidence intervals.
    aggregator = scoring.BootstrapAggregator()
    for ref, pred in zip(refs, preds):
        ref = _prepare_summary(ref)
        pred = _prepare_summary(pred)
        aggregator.add_scores(scorer.score(ref, pred))
    result = aggregator.aggregate()
    return {type: result[type].mid.fmeasure * 100 for type in rouge_types}


@register_task("xsum")
class XSum(Task):
    VERSION = 0
    DATASET_PATH = "EdinburghNLP/xsum"
    DATASET_NAME = None

    def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config=None):
        super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config)
        self.factkb_tokenizer = None
        self.factkb_model = None
        self.bert_score = None

    def maybe_init_factkb(self):
        if self.factkb_tokenizer is None or self.factkb_model is None:
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
            self.factkb_tokenizer = AutoTokenizer.from_pretrained("roberta-base", padding="max_length", truncation=True)
            self.factkb_model = AutoModelForSequenceClassification.from_pretrained("bunsenfeng/FactKB", num_labels=2, device_map="auto")

    def maybe_init_bertscore(self):
        if self.bert_score is None:
            from evaluate import load
            self.bert_score = load("bertscore")

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def training_docs(self):
        return self.dataset["train"]

    def validation_docs(self):
        return self.dataset["validation"]

    def test_docs(self):
        return self.dataset["test"]

    def doc_to_text(self, doc):
        return f'Document: {doc["document"]}\nSummary:'

    @staticmethod
    def should_decontaminate():
        return True

    def doc_to_decontamination_query(self, doc):
        return doc["document"]

    def doc_to_target(self, doc):
        return doc["summary"]

    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """

        return [
            Instance(
                request_type="generate_until",
                doc=doc,
                # arguments=(ctx, {"until": ["\n", "."]}),
                arguments=(ctx, {"until": ["\n"]}),
                idx=0,
                **kwargs
            )
        ]

    def process_results(self, doc, results):
        completion = results[0]

        document = doc["document"]
        gold_summary = doc["summary"]

        true_refs = [doc["summary"]]
        all_refs = true_refs

        # ROUGE-N
        rouge_scores = [rouge([ref], [completion]) for ref in all_refs]
        # ROUGE-1
        rouge1_scores = [score["rouge1"] for score in rouge_scores]
        # ROUGE-2
        rouge2_scores = [score["rouge2"] for score in rouge_scores]
        # ROUGE-L
        rougeL_scores = [score["rougeLsum"] for score in rouge_scores]

        self.maybe_init_factkb()
        input_factkb = [[completion, document]]
        factkb_tokens = self.factkb_tokenizer(input_factkb, return_tensors="pt", padding="max_length", truncation=True).to(self.factkb_model.device)
        factkb_logits = self.factkb_model(**factkb_tokens).logits
        factkb_res = torch.softmax(factkb_logits, dim=1)

        self.maybe_init_bertscore()
        bert_score_res = self.bert_score.compute(predictions=[completion], references=[gold_summary], model_type="microsoft/deberta-xlarge-mnli", lang="en")

        res = {
            "rouge1": rouge1_scores[0],
            "rouge2": rouge2_scores[0],
            "rougeL": rougeL_scores[0],
            "factKB": float(factkb_res[0][1]),
            "bertscore_precision": float(bert_score_res["precision"][0]),
            "bertscore_recall": float(bert_score_res["recall"][0]),
            "bertscore_f1": float(bert_score_res["f1"][0]),
        }

        # breakpoint()

        return res

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {k: mean for k in ["rouge1", "rouge2", "rougeL", "factKB", "bertscore_precision", "bertscore_recall", "bertscore_f1"]}

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {k: True for k in ["rouge1", "rouge2", "rougeL", "factKB", "bertscore_precision", "bertscore_recall", "bertscore_f1"]}