Spaces:
Runtime error
Runtime error
File size: 6,322 Bytes
018441b a8ede2f dc1ba50 018441b 43578e7 018441b dc1ba50 d01d881 dc1ba50 d01d881 dc1ba50 632dd72 ca9ece0 a8ede2f 018441b a8ede2f 61c2746 a8ede2f 018441b a8ede2f dc1ba50 a8ede2f 018441b a8ede2f dc1ba50 018441b dc1ba50 018441b dc1ba50 018441b dc1ba50 018441b a8ede2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
class Tasks(Enum):
# arc = Task("arc:challenge", "acc_norm", "ARC")
# hellaswag = Task("hellaswag", "acc_norm", "HellaSwag")
# mmlu = Task("hendrycksTest", "acc", "MMLU")
# truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
# winogrande = Task("winogrande", "acc", "Winogrande")
# gsm8k = Task("gsm8k", "acc", "GSM8K")
# drop = Task("drop", "f1", "DROP")
nqopen = Task("nq_open", "em", "NQ Open")
triviaqa = Task("triviaqa", "em", "TriviaQA")
truthfulqa = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
#truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
#truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float32 = ModelDetails("float32")
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
qt_8bit = ModelDetails("8bit")
qt_4bit = ModelDetails("4bit")
qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
@staticmethod
def from_str(precision: str):
if precision in ["torch.float32", "float32"]:
return Precision.float32
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["GPTQ", "None"]:
return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
|