Spaces:
Runtime error
Runtime error
File size: 6,751 Bytes
c323865 6dfea56 c323865 6dfea56 c323865 620ce47 c323865 6dcc9f8 6dfea56 c323865 d3d434b a6af742 6dcc9f8 7b5f39c 6d6c96f c323865 d3d434b 620ce47 c323865 17800c0 6d6c96f c323865 a6af742 c323865 620ce47 c323865 620ce47 c323865 620ce47 c323865 a6af742 c323865 620ce47 c323865 d3d434b a6af742 c323865 a6af742 6d6c96f 17800c0 6d6c96f a6af742 6d6c96f a6af742 17800c0 6d6c96f 17800c0 6d6c96f 17800c0 6d6c96f 17800c0 c323865 3557858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import os
from typing import Union, List
from lm_eval.api.task import ConfigurableTask
from lm_eval.api.instance import Instance
# from lm_eval.api.registry import register_task
from lm_eval.api.metrics import mean
from src.backend.envs import DEVICE
import spacy
from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckNLI, SelfCheckBERTScore, SelfCheckNgram
# @register_task("selfcheckgpt")
class SelfCheckGPT(ConfigurableTask):
VERSION = 0.0
DATASET_PATH = "potsawee/wiki_bio_gpt3_hallucination"
DATASET_NAME = None
OUTPUT_TYPE = 'generate_until'
def __init__(self):
super().__init__(config={'metadata': {'version': self.VERSION}})
# these end tokens are hard coded because of the current limitaion of the llm-eval.
self.generation_kwargs = {"until": ["\n\n", "<unk>", "<|im_end|>", "</s>"], "max_length": 512}
self.generation_kwargs_sampling_number = 5 # the number of sampling for self-consistence
self.generation_kwargs_sampling = {"temperature": 0.99, "do_sample": True, "until": ["\n\n", "<unk>", "<|im_end|>", "</s>"], "max_length": 512}
self.selfcheckgpt_type = os.environ.get('SELFCHECKGPTTYPE', 'SelfCheckNLI')
self.selfcheckgpt_device = os.environ.get('SELFCHECKGPTDEVICE', DEVICE)
self.selfcheckgpt_nlp = spacy.load("en_core_web_sm")
if self.selfcheckgpt_type == 'SelfCheckNgram':
self.selfcheckgpt = SelfCheckNgram(n=1)
elif self.selfcheckgpt_type == 'SelfCheckBERTScore':
self.selfcheckgpt = SelfCheckBERTScore(rescale_with_baseline=True)
elif self.selfcheckgpt_type == 'SelfCheckMQAG':
self.selfcheckgpt = SelfCheckMQAG(device=self.selfcheckgpt_device)
elif self.selfcheckgpt_type == 'SelfCheckNLI':
self.selfcheckgpt = SelfCheckNLI(device=self.selfcheckgpt_device)
self.SelfCheckNLI_error_cnt = 0
def has_training_docs(self):
return False
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def validation_docs(self):
return self.dataset["evaluation"]
def doc_to_text(self, doc):
doc_text = doc["wiki_bio_text"]
doc_text = doc_text.split()
doc_text = " ".join(doc_text[:5])
# prompt = f"This is a passage from Wikipedia about {context}:\n\n"
doc_text = f"Please generate a Wikipedia passage starting with: {doc_text}\n"
return doc_text
def doc_to_target(self, doc):
answer = doc['wiki_bio_text']
return answer
def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instance], Instance]:
arguments = (ctx, self.generation_kwargs)
request_list = [
Instance(request_type='generate_until', doc=doc, arguments=arguments, idx=0, **kwargs),
]
sampling_arguments = (ctx, self.generation_kwargs_sampling)
request_list.extend([
Instance(request_type='generate_until', doc=doc, arguments=sampling_arguments, idx=idx, **kwargs)
for idx in range(1, self.generation_kwargs_sampling_number+1)
]
)
return request_list
def process_results(self, doc, results):
response_temperature_0 = results[0]
other_responses = results[1:]
passage = self.doc_to_target(doc)
sentences = self.selfcheckgpt_nlp(response_temperature_0)
sentences = [sent.text.strip() for sent in sentences.sents]
if self.selfcheckgpt_type == 'SelfCheckNgram':
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, passage=response_temperature_0, sampled_passages=other_responses)
return {
'avg-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_neg_logprob'],
'max-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_max_neg_logprob']
}
elif self.selfcheckgpt_type == 'SelfCheckBERTScore':
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses)
elif self.selfcheckgpt_type == 'SelfCheckMQAG':
selfcheckgpt_scores = self.selfcheckgpt.predict(
sentences=sentences,
passage=response_temperature_0,
sampled_passages=other_responses,
num_questions_per_sent=5, # number of questions to be drawn
scoring_method='bayes_with_alpha', # options = 'counting', 'bayes', 'bayes_with_alpha'
beta1=0.8, beta2=0.8) # additional params depending on scoring_method
elif self.selfcheckgpt_type == 'SelfCheckNLI':
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses)
if len(selfcheckgpt_scores) == 0:
self.SelfCheckNLI_error_cnt += 1
print(f"SelfCheckNLI Warning.SelfCheckNLI_error_cnt:{self.SelfCheckNLI_error_cnt}. This instance is marked as hallucinated with 0.0.")
result = {
'avg-selfcheckgpt': 0.0,
'max-selfcheckgpt': 0.0
}
else:
threshold = 0.6 # https://huggingface.co/blog/dhuynh95/automatic-hallucination-detection
# passage is hallucianted if one sentence is hallucinated. It's very strict.
selfcheckgpt_scores_max = 0.0 if max(selfcheckgpt_scores) > threshold else 1.0
# passage is hallucianted if average score of all sentences is hallucinated.
selfcheckgpt_scores_avg = 0.0 if sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) > threshold else 1.0
result = {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max}
return result
selfcheckgpt_scores_avg = sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) if len(selfcheckgpt_scores) > 0 else 0
selfcheckgpt_scores_max = max(selfcheckgpt_scores)
return {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {k: mean for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {k: True for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]}
|