File size: 77,015 Bytes
b402a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
import os
import warnings

from modules.logging_colors import logger
from modules.block_requests import OpenMonkeyPatch, RequestBlocker

os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
os.environ['BITSANDBYTES_NOWELCOME'] = '1'
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')

with RequestBlocker():
    import gradio as gr

import matplotlib
matplotlib.use('Agg')  # This fixes LaTeX rendering on some systems

import importlib
import json
import math
import os
import re
import sys
import time
import traceback
from functools import partial
from pathlib import Path
from threading import Lock

import psutil
import torch
import yaml
from PIL import Image

import modules.extensions as extensions_module
from modules import chat, loaders, presets, shared, training, ui, utils
from modules.extensions import apply_extensions
from modules.github import clone_or_pull_repository
from modules.html_generator import chat_html_wrapper
from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model
from modules.models_settings import (
    apply_model_settings_to_state,
    get_model_settings_from_yamls,
    save_model_settings,
    update_model_parameters
)
from modules.text_generation import (
    generate_reply_wrapper,
    get_encoded_length,
    stop_everything_event
)
from modules.utils import gradio


def load_model_wrapper(selected_model, loader, autoload=False):
    if not autoload:
        yield f"The settings for {selected_model} have been updated.\nClick on \"Load\" to load it."
        return

    if selected_model == 'None':
        yield "No model selected"
    else:
        try:
            yield f"Loading {selected_model}..."
            shared.model_name = selected_model
            unload_model()
            if selected_model != '':
                shared.model, shared.tokenizer = load_model(shared.model_name, loader)

            if shared.model is not None:
                yield f"Successfully loaded {selected_model}"
            else:
                yield f"Failed to load {selected_model}."
        except:
            exc = traceback.format_exc()
            logger.error('Failed to load the model.')
            print(exc)
            yield exc


def load_lora_wrapper(selected_loras):
    yield ("Applying the following LoRAs to {}:\n\n{}".format(shared.model_name, '\n'.join(selected_loras)))
    add_lora_to_model(selected_loras)
    yield ("Successfuly applied the LoRAs")


def load_prompt(fname):
    if fname in ['None', '']:
        return ''
    elif fname.startswith('Instruct-'):
        fname = re.sub('^Instruct-', '', fname)
        file_path = Path(f'characters/instruction-following/{fname}.yaml')
        if not file_path.exists():
            return ''

        with open(file_path, 'r', encoding='utf-8') as f:
            data = yaml.safe_load(f)
            output = ''
            if 'context' in data:
                output += data['context']

            replacements = {
                '<|user|>': data['user'],
                '<|bot|>': data['bot'],
                '<|user-message|>': 'Input',
            }

            output += utils.replace_all(data['turn_template'].split('<|bot-message|>')[0], replacements)
            return output.rstrip(' ')
    else:
        file_path = Path(f'prompts/{fname}.txt')
        if not file_path.exists():
            return ''

        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
            if text[-1] == '\n':
                text = text[:-1]

            return text


def count_tokens(text):
    try:
        tokens = get_encoded_length(text)
        return f'{tokens} tokens in the input.'
    except:
        return 'Couldn\'t count the number of tokens. Is a tokenizer loaded?'


def download_model_wrapper(repo_id, progress=gr.Progress()):
    try:
        downloader_module = importlib.import_module("download-model")
        downloader = downloader_module.ModelDownloader()
        repo_id_parts = repo_id.split(":")
        model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id
        branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main"
        check = False

        progress(0.0)
        yield ("Cleaning up the model/branch names")
        model, branch = downloader.sanitize_model_and_branch_names(model, branch)

        yield ("Getting the download links from Hugging Face")
        links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=False)

        yield ("Getting the output folder")
        base_folder = shared.args.lora_dir if is_lora else shared.args.model_dir
        output_folder = downloader.get_output_folder(model, branch, is_lora, base_folder=base_folder)

        if check:
            progress(0.5)
            yield ("Checking previously downloaded files")
            downloader.check_model_files(model, branch, links, sha256, output_folder)
            progress(1.0)
        else:
            yield (f"Downloading files to {output_folder}")
            downloader.download_model_files(model, branch, links, sha256, output_folder, progress_bar=progress, threads=1)
            yield ("Done!")
    except:
        progress(1.0)
        yield traceback.format_exc()


def create_model_menus():
    # Finding the default values for the GPU and CPU memories
    total_mem = []
    for i in range(torch.cuda.device_count()):
        total_mem.append(math.floor(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024)))

    default_gpu_mem = []
    if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0:
        for i in shared.args.gpu_memory:
            if 'mib' in i.lower():
                default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)))
            else:
                default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)) * 1000)
    while len(default_gpu_mem) < len(total_mem):
        default_gpu_mem.append(0)

    total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024 * 1024))
    if shared.args.cpu_memory is not None:
        default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory)
    else:
        default_cpu_mem = 0

    with gr.Row():
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        shared.gradio['model_menu'] = gr.Dropdown(choices=utils.get_available_models(), value=shared.model_name, label='Model', elem_classes='slim-dropdown')
                        ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': utils.get_available_models()}, 'refresh-button')
                        load = gr.Button("Load", visible=not shared.settings['autoload_model'], elem_classes='refresh-button')
                        unload = gr.Button("Unload", elem_classes='refresh-button')
                        reload = gr.Button("Reload", elem_classes='refresh-button')
                        save_settings = gr.Button("Save settings", elem_classes='refresh-button')

                with gr.Column():
                    with gr.Row():
                        shared.gradio['lora_menu'] = gr.Dropdown(multiselect=True, choices=utils.get_available_loras(), value=shared.lora_names, label='LoRA(s)', elem_classes='slim-dropdown')
                        ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': utils.get_available_loras(), 'value': shared.lora_names}, 'refresh-button')
                        shared.gradio['lora_menu_apply'] = gr.Button(value='Apply LoRAs', elem_classes='refresh-button')

    with gr.Row():
        with gr.Column():
            shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "ExLlama_HF", "ExLlama", "AutoGPTQ", "GPTQ-for-LLaMa", "llama.cpp", "llamacpp_HF"], value=None)
            with gr.Box():
                with gr.Row():
                    with gr.Column():
                        for i in range(len(total_mem)):
                            shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])

                        shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
                        shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:')
                        shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
                        shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)

                        shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
                        shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
                        shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
                        shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
                        shared.gradio['n_gqa'] = gr.Slider(minimum=0, maximum=16, step=1, label="n_gqa", value=shared.args.n_gqa, info='grouped-query attention. Must be 8 for llama-2 70b.')
                        shared.gradio['rms_norm_eps'] = gr.Slider(minimum=0, maximum=1e-5, step=1e-6, label="rms_norm_eps", value=shared.args.n_gqa, info='5e-6 is a good value for llama-2 models.')

                        shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None")
                        shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
                        shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
                        shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
                        shared.gradio['autogptq_info'] = gr.Markdown('* ExLlama_HF is recommended over AutoGPTQ for models derived from LLaMA.')
                        shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
                        shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=2048, maximum=16384, step=256, info='Maximum sequence length.', value=shared.args.max_seq_len)
                        shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should typically be set to max_seq_len / 2048.', value=shared.args.compress_pos_emb)
                        shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=32, step=1, info='Positional embeddings alpha factor for NTK RoPE scaling. Scaling is not identical to embedding compression. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)

                    with gr.Column():
                        shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
                        shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Disable if running low on VRAM.')
                        shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
                        shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", value=shared.args.no_use_cuda_fp16, info='This can make models faster on some systems.')
                        shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
                        shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
                        shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
                        shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
                        shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
                        shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
                        shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
                        shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
                        shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
                        shared.gradio['low_vram'] = gr.Checkbox(label="low-vram", value=shared.args.low_vram)
                        shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
                        shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
                        shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
                        shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
                        shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
                        shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.')
                        shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF is a wrapper that lets you use llama.cpp like a Transformers model, which means it can use the Transformers samplers. To use it, make sure to first download oobabooga/llama-tokenizer under "Download custom model or LoRA".')

        with gr.Column():
            with gr.Row():
                shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.')

            shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main")
            shared.gradio['download_model_button'] = gr.Button("Download")

            with gr.Row():
                shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')

    shared.gradio['loader'].change(loaders.make_loader_params_visible, gradio('loader'), gradio(loaders.get_all_params()))

    # In this event handler, the interface state is read and updated
    # with the model defaults (if any), and then the model is loaded
    # unless "autoload_model" is unchecked
    shared.gradio['model_menu'].change(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        apply_model_settings_to_state, gradio('model_menu', 'interface_state'), gradio('interface_state')).then(
        ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False).then(
        update_model_parameters, gradio('interface_state'), None).then(
        load_model_wrapper, gradio('model_menu', 'loader', 'autoload_model'), gradio('model_status'), show_progress=False)

    load.click(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        update_model_parameters, gradio('interface_state'), None).then(
        partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False)

    unload.click(
        unload_model, None, None).then(
        lambda: "Model unloaded", None, gradio('model_status'))

    reload.click(
        unload_model, None, None).then(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        update_model_parameters, gradio('interface_state'), None).then(
        partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False)

    save_settings.click(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        save_model_settings, gradio('model_menu', 'interface_state'), gradio('model_status'), show_progress=False)

    shared.gradio['lora_menu_apply'].click(load_lora_wrapper, gradio('lora_menu'), gradio('model_status'), show_progress=False)
    shared.gradio['download_model_button'].click(download_model_wrapper, gradio('custom_model_menu'), gradio('model_status'), show_progress=True)
    shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), gradio('autoload_model'), load)


def create_chat_settings_menus():
    if not shared.is_chat():
        return

    with gr.Box():
        gr.Markdown("Chat parameters")
        with gr.Row():
            with gr.Column():
                shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
                shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)', info='New generations will be called until either this number is reached or no new content is generated between two iterations.')

            with gr.Column():
                shared.gradio['stop_at_newline'] = gr.Checkbox(value=shared.settings['stop_at_newline'], label='Stop generating at new line character')


def create_settings_menus(default_preset):
    generate_params = presets.load_preset(default_preset)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset, label='Generation parameters preset', elem_classes='slim-dropdown')
                ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button')
                shared.gradio['save_preset'] = gr.Button('๐Ÿ’พ', elem_classes='refresh-button')
                shared.gradio['delete_preset'] = gr.Button('๐Ÿ—‘๏ธ', elem_classes='refresh-button')

        with gr.Column():
            filter_by_loader = gr.Dropdown(label="Filter by loader", choices=["All", "Transformers", "ExLlama_HF", "ExLlama", "AutoGPTQ", "GPTQ-for-LLaMa", "llama.cpp", "llamacpp_HF"], value="All", elem_classes='slim-dropdown')

    with gr.Row():
        with gr.Column():
            with gr.Box():
                with gr.Row():
                    with gr.Column():
                        shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
                        shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p')
                        shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k')
                        shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p')
                        shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff')
                        shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff')
                        shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
                        shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')

                    with gr.Column():
                        shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty')
                        shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range')
                        shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty')
                        shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
                        shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length')
                        shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
                        shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')

            with gr.Accordion("Learn more", open=False):
                gr.Markdown("""

    For a technical description of the parameters, the [transformers documentation](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig) is a good reference.

    The best presets, according to the [Preset Arena](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md) experiment, are:

    * Instruction following:
        1) Divine Intellect
        2) Big O
        3) simple-1
        4) Space Alien
        5) StarChat
        6) Titanic
        7) tfs-with-top-a
        8) Asterism
        9) Contrastive Search

    * Chat:
        1) Midnight Enigma
        2) Yara
        3) Shortwave

    ### Temperature
    Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.
    ### top_p
    If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.
    ### top_k
    Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.
    ### typical_p
    If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.
    ### epsilon_cutoff
    In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.
    ### eta_cutoff
    In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.
    ### repetition_penalty
    Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.
    ### repetition_penalty_range
    The number of most recent tokens to consider for repetition penalty. 0 makes all tokens be used.
    ### encoder_repetition_penalty
    Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.
    ### no_repeat_ngram_size
    If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.
    ### min_length
    Minimum generation length in tokens.
    ### penalty_alpha
    Contrastive Search is enabled by setting this to greater than zero and unchecking "do_sample". It should be used with a low value of top_k, for instance, top_k = 4.

                """, elem_classes="markdown")

        with gr.Column():
            create_chat_settings_menus()
            with gr.Box():
                with gr.Row():
                    with gr.Column():
                        shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
                        shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
                        shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')

                    with gr.Column():
                        shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='For Contrastive Search. do_sample must be unchecked.')

                        shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams', info='For Beam Search, along with length_penalty and early_stopping.')
                        shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
                        shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')

            with gr.Box():
                with gr.Row():
                    with gr.Column():
                        shared.gradio['truncation_length'] = gr.Slider(value=shared.settings['truncation_length'], minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
                        shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas. For instance: "\\nYour Assistant:", "\\nThe assistant:"')
                    with gr.Column():
                        shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.')
                        shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.')

                        shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.')
                        shared.gradio['stream'] = gr.Checkbox(value=not shared.args.no_stream, label='Activate text streaming')

    filter_by_loader.change(loaders.blacklist_samplers, filter_by_loader, gradio(loaders.list_all_samplers()), show_progress=False)
    shared.gradio['preset_menu'].change(presets.load_preset_for_ui, gradio('preset_menu', 'interface_state'), gradio('interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a'))


def create_file_saving_menus():

    # Text file saver
    with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['file_saver']:
        shared.gradio['save_filename'] = gr.Textbox(lines=1, label='File name')
        shared.gradio['save_root'] = gr.Textbox(lines=1, label='File folder', info='For reference. Unchangeable.', interactive=False)
        shared.gradio['save_contents'] = gr.Textbox(lines=10, label='File contents')
        with gr.Row():
            shared.gradio['save_confirm'] = gr.Button('Save', elem_classes="small-button")
            shared.gradio['save_cancel'] = gr.Button('Cancel', elem_classes="small-button")

    # Text file deleter
    with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['file_deleter']:
        shared.gradio['delete_filename'] = gr.Textbox(lines=1, label='File name')
        shared.gradio['delete_root'] = gr.Textbox(lines=1, label='File folder', info='For reference. Unchangeable.', interactive=False)
        with gr.Row():
            shared.gradio['delete_confirm'] = gr.Button('Delete', elem_classes="small-button", variant='stop')
            shared.gradio['delete_cancel'] = gr.Button('Cancel', elem_classes="small-button")

    # Character saver/deleter
    if shared.is_chat():
        with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['character_saver']:
            shared.gradio['save_character_filename'] = gr.Textbox(lines=1, label='File name', info='The character will be saved to your characters/ folder with this base filename.')
            with gr.Row():
                shared.gradio['save_character_confirm'] = gr.Button('Save', elem_classes="small-button")
                shared.gradio['save_character_cancel'] = gr.Button('Cancel', elem_classes="small-button")

        with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['character_deleter']:
            gr.Markdown('Confirm the character deletion?')
            with gr.Row():
                shared.gradio['delete_character_confirm'] = gr.Button('Delete', elem_classes="small-button", variant='stop')
                shared.gradio['delete_character_cancel'] = gr.Button('Cancel', elem_classes="small-button")


def create_file_saving_event_handlers():
    shared.gradio['save_confirm'].click(
        lambda x, y, z: utils.save_file(x + y, z), gradio('save_root', 'save_filename', 'save_contents'), None).then(
        lambda: gr.update(visible=False), None, gradio('file_saver'))

    shared.gradio['delete_confirm'].click(
        lambda x, y: utils.delete_file(x + y), gradio('delete_root', 'delete_filename'), None).then(
        lambda: gr.update(visible=False), None, gradio('file_deleter'))

    shared.gradio['delete_cancel'].click(lambda: gr.update(visible=False), None, gradio('file_deleter'))
    shared.gradio['save_cancel'].click(lambda: gr.update(visible=False), None, gradio('file_saver'))
    if shared.is_chat():
        shared.gradio['save_character_confirm'].click(
            chat.save_character, gradio('name2', 'greeting', 'context', 'character_picture', 'save_character_filename'), None).then(
            lambda: gr.update(visible=False), None, gradio('character_saver'))

        shared.gradio['delete_character_confirm'].click(
            chat.delete_character, gradio('character_menu'), None).then(
            lambda: gr.update(visible=False), None, gradio('character_deleter')).then(
            lambda: gr.update(choices=utils.get_available_characters()), None, gradio('character_menu'))

        shared.gradio['save_character_cancel'].click(lambda: gr.update(visible=False), None, gradio('character_saver'))
        shared.gradio['delete_character_cancel'].click(lambda: gr.update(visible=False), None, gradio('character_deleter'))

    shared.gradio['save_preset'].click(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        presets.generate_preset_yaml, gradio('interface_state'), gradio('save_contents')).then(
        lambda: 'presets/', None, gradio('save_root')).then(
        lambda: 'My Preset.yaml', None, gradio('save_filename')).then(
        lambda: gr.update(visible=True), None, gradio('file_saver'))

    shared.gradio['delete_preset'].click(
        lambda x: f'{x}.yaml', gradio('preset_menu'), gradio('delete_filename')).then(
        lambda: 'presets/', None, gradio('delete_root')).then(
        lambda: gr.update(visible=True), None, gradio('file_deleter'))

    if not shared.args.multi_user:

        def load_session(session, state):
            with open(Path(f'logs/{session}.json'), 'r') as f:
                state.update(json.loads(f.read()))

            if shared.is_chat():
                chat.save_persistent_history(state['history'], state['character_menu'], state['mode'])

            return state

        if shared.is_chat():
            shared.gradio['save_session'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda x: json.dumps(x, indent=4), gradio('interface_state'), gradio('save_contents')).then(
                lambda: 'logs/', None, gradio('save_root')).then(
                lambda x: f'session_{shared.get_mode()}_{x + "_" if x not in ["None", None, ""] else ""}{utils.current_time()}.json', gradio('character_menu'), gradio('save_filename')).then(
                lambda: gr.update(visible=True), None, gradio('file_saver'))

            shared.gradio['session_menu'].change(
                load_session, gradio('session_menu', 'interface_state'), gradio('interface_state')).then(
                ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False).then(
                chat.redraw_html, shared.reload_inputs, gradio('display'))

        else:
            shared.gradio['save_session'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda x: json.dumps(x, indent=4), gradio('interface_state'), gradio('save_contents')).then(
                lambda: 'logs/', None, gradio('save_root')).then(
                lambda: f'session_{shared.get_mode()}_{utils.current_time()}.json', None, gradio('save_filename')).then(
                lambda: gr.update(visible=True), None, gradio('file_saver'))

            shared.gradio['session_menu'].change(
                load_session, gradio('session_menu', 'interface_state'), gradio('interface_state')).then(
                ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False)

        shared.gradio['delete_session'].click(
            lambda x: f'{x}.json', gradio('session_menu'), gradio('delete_filename')).then(
            lambda: 'logs/', None, gradio('delete_root')).then(
            lambda: gr.update(visible=True), None, gradio('file_deleter'))


def set_interface_arguments(interface_mode, extensions, bool_active):
    modes = ["default", "notebook", "chat", "cai_chat"]
    cmd_list = vars(shared.args)
    bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]

    shared.args.extensions = extensions
    for k in modes[1:]:
        setattr(shared.args, k, False)
    if interface_mode != "default":
        setattr(shared.args, interface_mode, True)

    for k in bool_list:
        setattr(shared.args, k, False)
    for k in bool_active:
        setattr(shared.args, k, True)

    shared.need_restart = True


def create_interface():

    # Defining some variables
    gen_events = []
    default_preset = shared.settings['preset']
    default_text = load_prompt(shared.settings['prompt'])
    title = 'Text generation web UI'

    # Authentication variables
    auth = None
    gradio_auth_creds = []
    if shared.args.gradio_auth:
        gradio_auth_creds += [x.strip() for x in shared.args.gradio_auth.strip('"').replace('\n', '').split(',') if x.strip()]
    if shared.args.gradio_auth_path is not None:
        with open(shared.args.gradio_auth_path, 'r', encoding="utf8") as file:
            for line in file.readlines():
                gradio_auth_creds += [x.strip() for x in line.split(',') if x.strip()]
    if gradio_auth_creds:
        auth = [tuple(cred.split(':')) for cred in gradio_auth_creds]

    # Importing the extension files and executing their setup() functions
    if shared.args.extensions is not None and len(shared.args.extensions) > 0:
        extensions_module.load_extensions()

    # Forcing some events to be triggered on page load
    shared.persistent_interface_state.update({
        'loader': shared.args.loader or 'Transformers',
    })

    if shared.is_chat():
        shared.persistent_interface_state.update({
            'mode': shared.settings['mode'],
            'character_menu': shared.args.character or shared.settings['character'],
            'instruction_template': shared.settings['instruction_template']
        })

        if Path("cache/pfp_character.png").exists():
            Path("cache/pfp_character.png").unlink()

    # css/js strings
    css = ui.css if not shared.is_chat() else ui.css + ui.chat_css
    js = ui.main_js if not shared.is_chat() else ui.main_js + ui.chat_js
    css += apply_extensions('css')
    js += apply_extensions('js')

    with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as shared.gradio['interface']:
        if Path("notification.mp3").exists():
            shared.gradio['audio_notification'] = gr.Audio(interactive=False, value="notification.mp3", elem_id="audio_notification", visible=False)
            audio_notification_js = "document.querySelector('#audio_notification audio')?.play();"
        else:
            audio_notification_js = ""

        # Floating menus for saving/deleting files
        create_file_saving_menus()

        # Create chat mode interface
        if shared.is_chat():
            shared.input_elements = ui.list_interface_input_elements()

            shared.gradio.update({
                'interface_state': gr.State({k: None for k in shared.input_elements}),
                'Chat input': gr.State(),
                'dummy': gr.State(),
                'history': gr.State({'internal': [], 'visible': []}),
            })

            with gr.Tab('Text generation', elem_id='main'):
                shared.gradio['display'] = gr.HTML(value=chat_html_wrapper({'internal': [], 'visible': []}, shared.settings['name1'], shared.settings['name2'], 'chat', 'cai-chat'))
                shared.gradio['textbox'] = gr.Textbox(label='Input')
                with gr.Row():
                    shared.gradio['Stop'] = gr.Button('Stop', elem_id='stop')
                    shared.gradio['Generate'] = gr.Button('Generate', elem_id='Generate', variant='primary')
                    shared.gradio['Continue'] = gr.Button('Continue')

                with gr.Row():
                    shared.gradio['Impersonate'] = gr.Button('Impersonate')
                    shared.gradio['Regenerate'] = gr.Button('Regenerate')
                    shared.gradio['Remove last'] = gr.Button('Remove last')

                with gr.Row():
                    shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
                    shared.gradio['Replace last reply'] = gr.Button('Replace last reply')
                    shared.gradio['Send dummy message'] = gr.Button('Send dummy message')
                    shared.gradio['Send dummy reply'] = gr.Button('Send dummy reply')

                with gr.Row():
                    shared.gradio['Clear history'] = gr.Button('Clear history')
                    shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant='stop', visible=False)
                    shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)

                with gr.Row():
                    shared.gradio['start_with'] = gr.Textbox(label='Start reply with', placeholder='Sure thing!', value=shared.settings['start_with'])

                with gr.Row():
                    shared.gradio['mode'] = gr.Radio(choices=['chat', 'chat-instruct', 'instruct'], value=shared.settings['mode'] if shared.settings['mode'] in ['chat', 'instruct', 'chat-instruct'] else 'chat', label='Mode', info='Defines how the chat prompt is generated. In instruct and chat-instruct modes, the instruction template selected under "Chat settings" must match the current model.')
                    shared.gradio['chat_style'] = gr.Dropdown(choices=utils.get_available_chat_styles(), label='Chat style', value=shared.settings['chat_style'], visible=shared.settings['mode'] != 'instruct')

            with gr.Tab('Chat settings', elem_id='chat-settings'):

                with gr.Tab("Character"):
                    with gr.Row():
                        with gr.Column(scale=8):
                            with gr.Row():
                                shared.gradio['character_menu'] = gr.Dropdown(value='None', choices=utils.get_available_characters(), label='Character', elem_id='character-menu', info='Used in chat and chat-instruct modes.', elem_classes='slim-dropdown')
                                ui.create_refresh_button(shared.gradio['character_menu'], lambda: None, lambda: {'choices': utils.get_available_characters()}, 'refresh-button')
                                shared.gradio['save_character'] = gr.Button('๐Ÿ’พ', elem_classes='refresh-button')
                                shared.gradio['delete_character'] = gr.Button('๐Ÿ—‘๏ธ', elem_classes='refresh-button')

                            shared.gradio['name1'] = gr.Textbox(value=shared.settings['name1'], lines=1, label='Your name')
                            shared.gradio['name2'] = gr.Textbox(value=shared.settings['name2'], lines=1, label='Character\'s name')
                            shared.gradio['context'] = gr.Textbox(value=shared.settings['context'], lines=4, label='Context')
                            shared.gradio['greeting'] = gr.Textbox(value=shared.settings['greeting'], lines=4, label='Greeting')

                        with gr.Column(scale=1):
                            shared.gradio['character_picture'] = gr.Image(label='Character picture', type='pil')
                            shared.gradio['your_picture'] = gr.Image(label='Your picture', type='pil', value=Image.open(Path('cache/pfp_me.png')) if Path('cache/pfp_me.png').exists() else None)

                with gr.Tab("Instruction template"):
                    with gr.Row():
                        with gr.Row():
                            shared.gradio['instruction_template'] = gr.Dropdown(choices=utils.get_available_instruction_templates(), label='Instruction template', value='None', info='Change this according to the model/LoRA that you are using. Used in instruct and chat-instruct modes.', elem_classes='slim-dropdown')
                            ui.create_refresh_button(shared.gradio['instruction_template'], lambda: None, lambda: {'choices': utils.get_available_instruction_templates()}, 'refresh-button')
                            shared.gradio['save_template'] = gr.Button('๐Ÿ’พ', elem_classes='refresh-button')
                            shared.gradio['delete_template'] = gr.Button('๐Ÿ—‘๏ธ ', elem_classes='refresh-button')

                    shared.gradio['name1_instruct'] = gr.Textbox(value='', lines=2, label='User string')
                    shared.gradio['name2_instruct'] = gr.Textbox(value='', lines=1, label='Bot string')
                    shared.gradio['context_instruct'] = gr.Textbox(value='', lines=4, label='Context')
                    shared.gradio['turn_template'] = gr.Textbox(value=shared.settings['turn_template'], lines=1, label='Turn template', info='Used to precisely define the placement of spaces and new line characters in instruction prompts.')
                    with gr.Row():
                        shared.gradio['chat-instruct_command'] = gr.Textbox(value=shared.settings['chat-instruct_command'], lines=4, label='Command for chat-instruct mode', info='<|character|> gets replaced by the bot name, and <|prompt|> gets replaced by the regular chat prompt.')

                with gr.Tab('Chat history'):
                    with gr.Row():
                        with gr.Column():
                            shared.gradio['download'] = gr.File(label="Download")
                            shared.gradio['download_button'] = gr.Button(value='Refresh')

                        with gr.Column():
                            shared.gradio['upload_chat_history'] = gr.File(type='binary', file_types=['.json', '.txt'], label="Upload")

                with gr.Tab('Upload character'):
                    with gr.Tab('YAML or JSON'):
                        with gr.Row():
                            shared.gradio['upload_json'] = gr.File(type='binary', file_types=['.json', '.yaml'], label='JSON or YAML File')
                            shared.gradio['upload_img_bot'] = gr.Image(type='pil', label='Profile Picture (optional)')

                        shared.gradio['Submit character'] = gr.Button(value='Submit', interactive=False)

                    with gr.Tab('TavernAI PNG'):
                        with gr.Row():
                            with gr.Column():
                                shared.gradio['upload_img_tavern'] = gr.Image(type='pil', label='TavernAI PNG File', elem_id="upload_img_tavern")
                                shared.gradio['tavern_json'] = gr.State()
                            with gr.Column():
                                shared.gradio['tavern_name'] = gr.Textbox(value='', lines=1, label='Name', interactive=False)
                                shared.gradio['tavern_desc'] = gr.Textbox(value='', lines=4, max_lines=4, label='Description', interactive=False)

                        shared.gradio['Submit tavern character'] = gr.Button(value='Submit', interactive=False)

            with gr.Tab("Parameters", elem_id="parameters"):
                create_settings_menus(default_preset)

        # Create notebook mode interface
        elif shared.args.notebook:
            shared.input_elements = ui.list_interface_input_elements()
            shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
            shared.gradio['last_input'] = gr.State('')
            with gr.Tab("Text generation", elem_id="main"):
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Tab('Raw'):
                            shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox", lines=27)

                        with gr.Tab('Markdown'):
                            shared.gradio['markdown_render'] = gr.Button('Render')
                            shared.gradio['markdown'] = gr.Markdown()

                        with gr.Tab('HTML'):
                            shared.gradio['html'] = gr.HTML()

                        with gr.Row():
                            shared.gradio['Generate'] = gr.Button('Generate', variant='primary', elem_classes="small-button")
                            shared.gradio['Stop'] = gr.Button('Stop', elem_classes="small-button")
                            shared.gradio['Undo'] = gr.Button('Undo', elem_classes="small-button")
                            shared.gradio['Regenerate'] = gr.Button('Regenerate', elem_classes="small-button")

                    with gr.Column(scale=1):
                        gr.HTML('<div style="padding-bottom: 13px"></div>')
                        shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
                        with gr.Row():
                            shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), value='None', label='Prompt', elem_classes='slim-dropdown')
                            ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, lambda: {'choices': utils.get_available_prompts()}, ['refresh-button', 'refresh-button-small'])
                            shared.gradio['save_prompt'] = gr.Button('๐Ÿ’พ', elem_classes=['refresh-button', 'refresh-button-small'])
                            shared.gradio['delete_prompt'] = gr.Button('๐Ÿ—‘๏ธ', elem_classes=['refresh-button', 'refresh-button-small'])

                        shared.gradio['count_tokens'] = gr.Button('Count tokens')
                        shared.gradio['status'] = gr.Markdown('')

            with gr.Tab("Parameters", elem_id="parameters"):
                create_settings_menus(default_preset)

        # Create default mode interface
        else:
            shared.input_elements = ui.list_interface_input_elements()
            shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
            shared.gradio['last_input'] = gr.State('')
            with gr.Tab("Text generation", elem_id="main"):
                with gr.Row():
                    with gr.Column():
                        shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox_default", lines=27, label='Input')
                        shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
                        with gr.Row():
                            shared.gradio['Generate'] = gr.Button('Generate', variant='primary')
                            shared.gradio['Stop'] = gr.Button('Stop')
                            shared.gradio['Continue'] = gr.Button('Continue')
                            shared.gradio['count_tokens'] = gr.Button('Count tokens')

                        with gr.Row():
                            shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), value='None', label='Prompt', elem_classes='slim-dropdown')
                            ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, lambda: {'choices': utils.get_available_prompts()}, 'refresh-button')
                            shared.gradio['save_prompt'] = gr.Button('๐Ÿ’พ', elem_classes='refresh-button')
                            shared.gradio['delete_prompt'] = gr.Button('๐Ÿ—‘๏ธ', elem_classes='refresh-button')

                        shared.gradio['status'] = gr.Markdown('')

                    with gr.Column():
                        with gr.Tab('Raw'):
                            shared.gradio['output_textbox'] = gr.Textbox(elem_classes="textbox_default_output", lines=27, label='Output')

                        with gr.Tab('Markdown'):
                            shared.gradio['markdown_render'] = gr.Button('Render')
                            shared.gradio['markdown'] = gr.Markdown()

                        with gr.Tab('HTML'):
                            shared.gradio['html'] = gr.HTML()

            with gr.Tab("Parameters", elem_id="parameters"):
                create_settings_menus(default_preset)

        # Model tab
        with gr.Tab("Model", elem_id="model-tab"):
            create_model_menus()

        # Training tab
        with gr.Tab("Training", elem_id="training-tab"):
            training.create_train_interface()

        # Session tab
        with gr.Tab("Session", elem_id="session-tab"):
            modes = ["default", "notebook", "chat"]
            current_mode = "default"
            for mode in modes[1:]:
                if getattr(shared.args, mode):
                    current_mode = mode
                    break

            cmd_list = vars(shared.args)
            bool_list = sorted([k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes + ui.list_model_elements()])
            bool_active = [k for k in bool_list if vars(shared.args)[k]]

            with gr.Row():

                with gr.Column():
                    with gr.Row():
                        shared.gradio['interface_modes_menu'] = gr.Dropdown(choices=modes, value=current_mode, label="Mode", elem_classes='slim-dropdown')
                        shared.gradio['reset_interface'] = gr.Button("Apply and restart", elem_classes="small-button", variant="primary")
                        shared.gradio['toggle_dark_mode'] = gr.Button('Toggle ๐Ÿ’ก', elem_classes="small-button")

                    with gr.Row():
                        with gr.Column():
                            shared.gradio['extensions_menu'] = gr.CheckboxGroup(choices=utils.get_available_extensions(), value=shared.args.extensions, label="Available extensions", info='Note that some of these extensions may require manually installing Python requirements through the command: pip install -r extensions/extension_name/requirements.txt', elem_classes='checkboxgroup-table')

                        with gr.Column():
                            shared.gradio['bool_menu'] = gr.CheckboxGroup(choices=bool_list, value=bool_active, label="Boolean command-line flags", elem_classes='checkboxgroup-table')

                with gr.Column():
                    if not shared.args.multi_user:
                        with gr.Row():
                            shared.gradio['session_menu'] = gr.Dropdown(choices=utils.get_available_sessions(), value='None', label='Session', elem_classes='slim-dropdown', info='When saving a session, make sure to keep the initial part of the filename (session_chat, session_notebook, or session_default), otherwise it will not appear on this list afterwards.')
                            ui.create_refresh_button(shared.gradio['session_menu'], lambda: None, lambda: {'choices': utils.get_available_sessions()}, ['refresh-button'])
                            shared.gradio['save_session'] = gr.Button('๐Ÿ’พ', elem_classes=['refresh-button'])
                            shared.gradio['delete_session'] = gr.Button('๐Ÿ—‘๏ธ', elem_classes=['refresh-button'])

                    extension_name = gr.Textbox(lines=1, label='Install or update an extension', info='Enter the GitHub URL below and press Enter. For a list of extensions, see: https://github.com/oobabooga/text-generation-webui-extensions โš ๏ธ  WARNING โš ๏ธ : extensions can execute arbitrary code. Make sure to inspect their source code before activating them.')
                    extension_status = gr.Markdown()

            extension_name.submit(
                clone_or_pull_repository, extension_name, extension_status, show_progress=False).then(
                lambda: gr.update(choices=utils.get_available_extensions(), value=shared.args.extensions), None, gradio('extensions_menu'))

            # Reset interface event
            shared.gradio['reset_interface'].click(
                set_interface_arguments, gradio('interface_modes_menu', 'extensions_menu', 'bool_menu'), None).then(
                lambda: None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;padding-top:20%;margin:0;height:100vh;color:lightgray;text-align:center;background:var(--body-background-fill)">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500); return []}')

            shared.gradio['toggle_dark_mode'].click(lambda: None, None, None, _js='() => {document.getElementsByTagName("body")[0].classList.toggle("dark")}')

        # chat mode event handlers
        if shared.is_chat():
            shared.input_params = gradio('Chat input', 'start_with', 'interface_state')
            clear_arr = gradio('Clear history-confirm', 'Clear history', 'Clear history-cancel')
            shared.reload_inputs = gradio('history', 'name1', 'name2', 'mode', 'chat_style')

            gen_events.append(shared.gradio['Generate'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda x: (x, ''), gradio('textbox'), gradio('Chat input', 'textbox'), show_progress=False).then(
                chat.generate_chat_reply_wrapper, shared.input_params, gradio('display', 'history'), show_progress=False).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
                lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
            )

            gen_events.append(shared.gradio['textbox'].submit(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda x: (x, ''), gradio('textbox'), gradio('Chat input', 'textbox'), show_progress=False).then(
                chat.generate_chat_reply_wrapper, shared.input_params, gradio('display', 'history'), show_progress=False).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
                lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
            )

            gen_events.append(shared.gradio['Regenerate'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                partial(chat.generate_chat_reply_wrapper, regenerate=True), shared.input_params, gradio('display', 'history'), show_progress=False).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
                lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
            )

            gen_events.append(shared.gradio['Continue'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                partial(chat.generate_chat_reply_wrapper, _continue=True), shared.input_params, gradio('display', 'history'), show_progress=False).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
                lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
            )

            gen_events.append(shared.gradio['Impersonate'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda x: x, gradio('textbox'), gradio('Chat input'), show_progress=False).then(
                chat.impersonate_wrapper, shared.input_params, gradio('textbox'), show_progress=False).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
            )

            shared.gradio['Replace last reply'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.replace_last_reply, gradio('textbox', 'interface_state'), gradio('history')).then(
                lambda: '', None, gradio('textbox'), show_progress=False).then(
                chat.redraw_html, shared.reload_inputs, gradio('display')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)

            shared.gradio['Send dummy message'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.send_dummy_message, gradio('textbox', 'interface_state'), gradio('history')).then(
                lambda: '', None, gradio('textbox'), show_progress=False).then(
                chat.redraw_html, shared.reload_inputs, gradio('display')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)

            shared.gradio['Send dummy reply'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.send_dummy_reply, gradio('textbox', 'interface_state'), gradio('history')).then(
                lambda: '', None, gradio('textbox'), show_progress=False).then(
                chat.redraw_html, shared.reload_inputs, gradio('display')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)

            shared.gradio['Clear history'].click(lambda: [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, clear_arr)
            shared.gradio['Clear history-cancel'].click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
            shared.gradio['Clear history-confirm'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr).then(
                chat.clear_chat_log, gradio('interface_state'), gradio('history')).then(
                chat.redraw_html, shared.reload_inputs, gradio('display')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)

            shared.gradio['Remove last'].click(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.remove_last_message, gradio('history'), gradio('textbox', 'history'), show_progress=False).then(
                chat.redraw_html, shared.reload_inputs, gradio('display')).then(
                chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)

            shared.gradio['character_menu'].change(
                partial(chat.load_character, instruct=False), gradio('character_menu', 'name1', 'name2'), gradio('name1', 'name2', 'character_picture', 'greeting', 'context', 'dummy')).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                chat.load_persistent_history, gradio('interface_state'), gradio('history')).then(
                chat.redraw_html, shared.reload_inputs, gradio('display'))

            shared.gradio['Stop'].click(
                stop_everything_event, None, None, queue=False, cancels=gen_events if shared.args.no_stream else None).then(
                chat.redraw_html, shared.reload_inputs, gradio('display'))

            shared.gradio['mode'].change(
                lambda x: gr.update(visible=x != 'instruct'), gradio('mode'), gradio('chat_style'), show_progress=False).then(
                chat.redraw_html, shared.reload_inputs, gradio('display'))

            shared.gradio['chat_style'].change(chat.redraw_html, shared.reload_inputs, gradio('display'))
            shared.gradio['instruction_template'].change(
                partial(chat.load_character, instruct=True), gradio('instruction_template', 'name1_instruct', 'name2_instruct'), gradio('name1_instruct', 'name2_instruct', 'dummy', 'dummy', 'context_instruct', 'turn_template'))

            shared.gradio['upload_chat_history'].upload(
                chat.load_history, gradio('upload_chat_history', 'history'), gradio('history')).then(
                chat.redraw_html, shared.reload_inputs, gradio('display'))

            shared.gradio['Copy last reply'].click(chat.send_last_reply_to_input, gradio('history'), gradio('textbox'), show_progress=False)

            # Save/delete a character
            shared.gradio['save_character'].click(
                lambda x: x, gradio('name2'), gradio('save_character_filename')).then(
                lambda: gr.update(visible=True), None, gradio('character_saver'))

            shared.gradio['delete_character'].click(lambda: gr.update(visible=True), None, gradio('character_deleter'))

            shared.gradio['save_template'].click(
                lambda: 'My Template.yaml', None, gradio('save_filename')).then(
                lambda: 'characters/instruction-following/', None, gradio('save_root')).then(
                chat.generate_instruction_template_yaml, gradio('name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template'), gradio('save_contents')).then(
                lambda: gr.update(visible=True), None, gradio('file_saver'))

            shared.gradio['delete_template'].click(
                lambda x: f'{x}.yaml', gradio('instruction_template'), gradio('delete_filename')).then(
                lambda: 'characters/instruction-following/', None, gradio('delete_root')).then(
                lambda: gr.update(visible=True), None, gradio('file_deleter'))

            shared.gradio['download_button'].click(chat.save_history_at_user_request, gradio('history', 'character_menu', 'mode'), gradio('download'))
            shared.gradio['Submit character'].click(chat.upload_character, gradio('upload_json', 'upload_img_bot'), gradio('character_menu'))
            shared.gradio['upload_json'].upload(lambda: gr.update(interactive=True), None, gradio('Submit character'))
            shared.gradio['upload_json'].clear(lambda: gr.update(interactive=False), None, gradio('Submit character'))

            shared.gradio['Submit tavern character'].click(chat.upload_tavern_character, gradio('upload_img_tavern', 'tavern_json'), gradio('character_menu'))
            shared.gradio['upload_img_tavern'].upload(chat.check_tavern_character, gradio('upload_img_tavern'), gradio('tavern_name', 'tavern_desc', 'tavern_json', 'Submit tavern character'), show_progress=False)
            shared.gradio['upload_img_tavern'].clear(lambda: (None, None, None, gr.update(interactive=False)), None, gradio('tavern_name', 'tavern_desc', 'tavern_json', 'Submit tavern character'), show_progress=False)
            shared.gradio['your_picture'].change(
                chat.upload_your_profile_picture, gradio('your_picture'), None).then(
                partial(chat.redraw_html, reset_cache=True), shared.reload_inputs, gradio('display'))

        # notebook/default modes event handlers
        else:
            shared.input_params = gradio('textbox', 'interface_state')
            if shared.args.notebook:
                output_params = gradio('textbox', 'html')
            else:
                output_params = gradio('output_textbox', 'html')

            gen_events.append(shared.gradio['Generate'].click(
                lambda x: x, gradio('textbox'), gradio('last_input')).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
                # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
            )

            gen_events.append(shared.gradio['textbox'].submit(
                lambda x: x, gradio('textbox'), gradio('last_input')).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
                ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
                # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
            )

            if shared.args.notebook:
                shared.gradio['Undo'].click(lambda x: x, gradio('last_input'), gradio('textbox'), show_progress=False)
                shared.gradio['markdown_render'].click(lambda x: x, gradio('textbox'), gradio('markdown'), queue=False)
                gen_events.append(shared.gradio['Regenerate'].click(
                    lambda x: x, gradio('last_input'), gradio('textbox'), show_progress=False).then(
                    ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                    generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
                    ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                    lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
                    # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
                )
            else:
                shared.gradio['markdown_render'].click(lambda x: x, gradio('output_textbox'), gradio('markdown'), queue=False)
                gen_events.append(shared.gradio['Continue'].click(
                    ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                    generate_reply_wrapper, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=False).then(
                    ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
                    lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
                    # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[1]; element.scrollTop = element.scrollHeight}")
                )

            shared.gradio['Stop'].click(stop_everything_event, None, None, queue=False, cancels=gen_events if shared.args.no_stream else None)
            shared.gradio['prompt_menu'].change(load_prompt, gradio('prompt_menu'), gradio('textbox'), show_progress=False)
            shared.gradio['save_prompt'].click(
                lambda x: x, gradio('textbox'), gradio('save_contents')).then(
                lambda: 'prompts/', None, gradio('save_root')).then(
                lambda: utils.current_time() + '.txt', None, gradio('save_filename')).then(
                lambda: gr.update(visible=True), None, gradio('file_saver'))

            shared.gradio['delete_prompt'].click(
                lambda: 'prompts/', None, gradio('delete_root')).then(
                lambda x: x + '.txt', gradio('prompt_menu'), gradio('delete_filename')).then(
                lambda: gr.update(visible=True), None, gradio('file_deleter'))

            shared.gradio['count_tokens'].click(count_tokens, gradio('textbox'), gradio('status'), show_progress=False)

        create_file_saving_event_handlers()

        if shared.settings['dark_theme']:
            shared.gradio['interface'].load(lambda: None, None, None, _js="() => document.getElementsByTagName('body')[0].classList.add('dark')")

        shared.gradio['interface'].load(lambda: None, None, None, _js=f"() => {{{js}}}")
        shared.gradio['interface'].load(partial(ui.apply_interface_values, {}, use_persistent=True), None, gradio(ui.list_interface_input_elements()), show_progress=False)
        if shared.is_chat():
            shared.gradio['interface'].load(chat.redraw_html, shared.reload_inputs, gradio('display'))

        # Extensions tabs
        extensions_module.create_extensions_tabs()

        # Extensions block
        extensions_module.create_extensions_block()

    # Launch the interface
    shared.gradio['interface'].queue()
    with OpenMonkeyPatch():
        if shared.args.listen:
            shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_name=shared.args.listen_host or '0.0.0.0', server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)
        else:
            shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)


if __name__ == "__main__":
    # Loading custom settings
    settings_file = None
    if shared.args.settings is not None and Path(shared.args.settings).exists():
        settings_file = Path(shared.args.settings)
    elif Path('settings.yaml').exists():
        settings_file = Path('settings.yaml')
    elif Path('settings.json').exists():
        settings_file = Path('settings.json')

    if settings_file is not None:
        logger.info(f"Loading settings from {settings_file}...")
        file_contents = open(settings_file, 'r', encoding='utf-8').read()
        new_settings = json.loads(file_contents) if settings_file.suffix == "json" else yaml.safe_load(file_contents)
        for item in new_settings:
            shared.settings[item] = new_settings[item]

    # Set default model settings based on settings file
    shared.model_config['.*'] = {
        'wbits': 'None',
        'model_type': 'None',
        'groupsize': 'None',
        'pre_layer': 0,
        'mode': shared.settings['mode'],
        'skip_special_tokens': shared.settings['skip_special_tokens'],
        'custom_stopping_strings': shared.settings['custom_stopping_strings'],
        'truncation_length': shared.settings['truncation_length'],
        'n_gqa': 0,
        'rms_norm_eps': 0,
    }

    shared.model_config.move_to_end('.*', last=False)  # Move to the beginning

    # Default extensions
    extensions_module.available_extensions = utils.get_available_extensions()
    if shared.is_chat():
        for extension in shared.settings['chat_default_extensions']:
            shared.args.extensions = shared.args.extensions or []
            if extension not in shared.args.extensions:
                shared.args.extensions.append(extension)
    else:
        for extension in shared.settings['default_extensions']:
            shared.args.extensions = shared.args.extensions or []
            if extension not in shared.args.extensions:
                shared.args.extensions.append(extension)

    available_models = utils.get_available_models()

    # Model defined through --model
    if shared.args.model is not None:
        shared.model_name = shared.args.model

    # Select the model from a command-line menu
    elif shared.args.model_menu:
        if len(available_models) == 0:
            logger.error('No models are available! Please download at least one.')
            sys.exit(0)
        else:
            print('The following models are available:\n')
            for i, model in enumerate(available_models):
                print(f'{i+1}. {model}')

            print(f'\nWhich one do you want to load? 1-{len(available_models)}\n')
            i = int(input()) - 1
            print()

        shared.model_name = available_models[i]

    # If any model has been selected, load it
    if shared.model_name != 'None':
        model_settings = get_model_settings_from_yamls(shared.model_name)
        shared.settings.update(model_settings)  # hijacking the interface defaults
        update_model_parameters(model_settings, initial=True)  # hijacking the command-line arguments

        # Load the model
        shared.model, shared.tokenizer = load_model(shared.model_name)
        if shared.args.lora:
            add_lora_to_model(shared.args.lora)

    shared.generation_lock = Lock()

    # Launch the web UI
    create_interface()
    while True:
        time.sleep(0.5)
        if shared.need_restart:
            shared.need_restart = False
            time.sleep(0.5)
            shared.gradio['interface'].close()
            time.sleep(0.5)
            create_interface()