Spaces:
Runtime error
Runtime error
File size: 77,015 Bytes
b402a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 |
import os
import warnings
from modules.logging_colors import logger
from modules.block_requests import OpenMonkeyPatch, RequestBlocker
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
os.environ['BITSANDBYTES_NOWELCOME'] = '1'
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
with RequestBlocker():
import gradio as gr
import matplotlib
matplotlib.use('Agg') # This fixes LaTeX rendering on some systems
import importlib
import json
import math
import os
import re
import sys
import time
import traceback
from functools import partial
from pathlib import Path
from threading import Lock
import psutil
import torch
import yaml
from PIL import Image
import modules.extensions as extensions_module
from modules import chat, loaders, presets, shared, training, ui, utils
from modules.extensions import apply_extensions
from modules.github import clone_or_pull_repository
from modules.html_generator import chat_html_wrapper
from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model
from modules.models_settings import (
apply_model_settings_to_state,
get_model_settings_from_yamls,
save_model_settings,
update_model_parameters
)
from modules.text_generation import (
generate_reply_wrapper,
get_encoded_length,
stop_everything_event
)
from modules.utils import gradio
def load_model_wrapper(selected_model, loader, autoload=False):
if not autoload:
yield f"The settings for {selected_model} have been updated.\nClick on \"Load\" to load it."
return
if selected_model == 'None':
yield "No model selected"
else:
try:
yield f"Loading {selected_model}..."
shared.model_name = selected_model
unload_model()
if selected_model != '':
shared.model, shared.tokenizer = load_model(shared.model_name, loader)
if shared.model is not None:
yield f"Successfully loaded {selected_model}"
else:
yield f"Failed to load {selected_model}."
except:
exc = traceback.format_exc()
logger.error('Failed to load the model.')
print(exc)
yield exc
def load_lora_wrapper(selected_loras):
yield ("Applying the following LoRAs to {}:\n\n{}".format(shared.model_name, '\n'.join(selected_loras)))
add_lora_to_model(selected_loras)
yield ("Successfuly applied the LoRAs")
def load_prompt(fname):
if fname in ['None', '']:
return ''
elif fname.startswith('Instruct-'):
fname = re.sub('^Instruct-', '', fname)
file_path = Path(f'characters/instruction-following/{fname}.yaml')
if not file_path.exists():
return ''
with open(file_path, 'r', encoding='utf-8') as f:
data = yaml.safe_load(f)
output = ''
if 'context' in data:
output += data['context']
replacements = {
'<|user|>': data['user'],
'<|bot|>': data['bot'],
'<|user-message|>': 'Input',
}
output += utils.replace_all(data['turn_template'].split('<|bot-message|>')[0], replacements)
return output.rstrip(' ')
else:
file_path = Path(f'prompts/{fname}.txt')
if not file_path.exists():
return ''
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
if text[-1] == '\n':
text = text[:-1]
return text
def count_tokens(text):
try:
tokens = get_encoded_length(text)
return f'{tokens} tokens in the input.'
except:
return 'Couldn\'t count the number of tokens. Is a tokenizer loaded?'
def download_model_wrapper(repo_id, progress=gr.Progress()):
try:
downloader_module = importlib.import_module("download-model")
downloader = downloader_module.ModelDownloader()
repo_id_parts = repo_id.split(":")
model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id
branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main"
check = False
progress(0.0)
yield ("Cleaning up the model/branch names")
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
yield ("Getting the download links from Hugging Face")
links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=False)
yield ("Getting the output folder")
base_folder = shared.args.lora_dir if is_lora else shared.args.model_dir
output_folder = downloader.get_output_folder(model, branch, is_lora, base_folder=base_folder)
if check:
progress(0.5)
yield ("Checking previously downloaded files")
downloader.check_model_files(model, branch, links, sha256, output_folder)
progress(1.0)
else:
yield (f"Downloading files to {output_folder}")
downloader.download_model_files(model, branch, links, sha256, output_folder, progress_bar=progress, threads=1)
yield ("Done!")
except:
progress(1.0)
yield traceback.format_exc()
def create_model_menus():
# Finding the default values for the GPU and CPU memories
total_mem = []
for i in range(torch.cuda.device_count()):
total_mem.append(math.floor(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024)))
default_gpu_mem = []
if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0:
for i in shared.args.gpu_memory:
if 'mib' in i.lower():
default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)))
else:
default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)) * 1000)
while len(default_gpu_mem) < len(total_mem):
default_gpu_mem.append(0)
total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024 * 1024))
if shared.args.cpu_memory is not None:
default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory)
else:
default_cpu_mem = 0
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['model_menu'] = gr.Dropdown(choices=utils.get_available_models(), value=shared.model_name, label='Model', elem_classes='slim-dropdown')
ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': utils.get_available_models()}, 'refresh-button')
load = gr.Button("Load", visible=not shared.settings['autoload_model'], elem_classes='refresh-button')
unload = gr.Button("Unload", elem_classes='refresh-button')
reload = gr.Button("Reload", elem_classes='refresh-button')
save_settings = gr.Button("Save settings", elem_classes='refresh-button')
with gr.Column():
with gr.Row():
shared.gradio['lora_menu'] = gr.Dropdown(multiselect=True, choices=utils.get_available_loras(), value=shared.lora_names, label='LoRA(s)', elem_classes='slim-dropdown')
ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': utils.get_available_loras(), 'value': shared.lora_names}, 'refresh-button')
shared.gradio['lora_menu_apply'] = gr.Button(value='Apply LoRAs', elem_classes='refresh-button')
with gr.Row():
with gr.Column():
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "ExLlama_HF", "ExLlama", "AutoGPTQ", "GPTQ-for-LLaMa", "llama.cpp", "llamacpp_HF"], value=None)
with gr.Box():
with gr.Row():
with gr.Column():
for i in range(len(total_mem)):
shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:')
shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
shared.gradio['n_gqa'] = gr.Slider(minimum=0, maximum=16, step=1, label="n_gqa", value=shared.args.n_gqa, info='grouped-query attention. Must be 8 for llama-2 70b.')
shared.gradio['rms_norm_eps'] = gr.Slider(minimum=0, maximum=1e-5, step=1e-6, label="rms_norm_eps", value=shared.args.n_gqa, info='5e-6 is a good value for llama-2 models.')
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
shared.gradio['autogptq_info'] = gr.Markdown('* ExLlama_HF is recommended over AutoGPTQ for models derived from LLaMA.')
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=2048, maximum=16384, step=256, info='Maximum sequence length.', value=shared.args.max_seq_len)
shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should typically be set to max_seq_len / 2048.', value=shared.args.compress_pos_emb)
shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=32, step=1, info='Positional embeddings alpha factor for NTK RoPE scaling. Scaling is not identical to embedding compression. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
with gr.Column():
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", value=shared.args.no_use_cuda_fp16, info='This can make models faster on some systems.')
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
shared.gradio['low_vram'] = gr.Checkbox(label="low-vram", value=shared.args.low_vram)
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.')
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF is a wrapper that lets you use llama.cpp like a Transformers model, which means it can use the Transformers samplers. To use it, make sure to first download oobabooga/llama-tokenizer under "Download custom model or LoRA".')
with gr.Column():
with gr.Row():
shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.')
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main")
shared.gradio['download_model_button'] = gr.Button("Download")
with gr.Row():
shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')
shared.gradio['loader'].change(loaders.make_loader_params_visible, gradio('loader'), gradio(loaders.get_all_params()))
# In this event handler, the interface state is read and updated
# with the model defaults (if any), and then the model is loaded
# unless "autoload_model" is unchecked
shared.gradio['model_menu'].change(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
apply_model_settings_to_state, gradio('model_menu', 'interface_state'), gradio('interface_state')).then(
ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False).then(
update_model_parameters, gradio('interface_state'), None).then(
load_model_wrapper, gradio('model_menu', 'loader', 'autoload_model'), gradio('model_status'), show_progress=False)
load.click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
update_model_parameters, gradio('interface_state'), None).then(
partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False)
unload.click(
unload_model, None, None).then(
lambda: "Model unloaded", None, gradio('model_status'))
reload.click(
unload_model, None, None).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
update_model_parameters, gradio('interface_state'), None).then(
partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False)
save_settings.click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
save_model_settings, gradio('model_menu', 'interface_state'), gradio('model_status'), show_progress=False)
shared.gradio['lora_menu_apply'].click(load_lora_wrapper, gradio('lora_menu'), gradio('model_status'), show_progress=False)
shared.gradio['download_model_button'].click(download_model_wrapper, gradio('custom_model_menu'), gradio('model_status'), show_progress=True)
shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), gradio('autoload_model'), load)
def create_chat_settings_menus():
if not shared.is_chat():
return
with gr.Box():
gr.Markdown("Chat parameters")
with gr.Row():
with gr.Column():
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)', info='New generations will be called until either this number is reached or no new content is generated between two iterations.')
with gr.Column():
shared.gradio['stop_at_newline'] = gr.Checkbox(value=shared.settings['stop_at_newline'], label='Stop generating at new line character')
def create_settings_menus(default_preset):
generate_params = presets.load_preset(default_preset)
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset, label='Generation parameters preset', elem_classes='slim-dropdown')
ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button')
shared.gradio['save_preset'] = gr.Button('๐พ', elem_classes='refresh-button')
shared.gradio['delete_preset'] = gr.Button('๐๏ธ', elem_classes='refresh-button')
with gr.Column():
filter_by_loader = gr.Dropdown(label="Filter by loader", choices=["All", "Transformers", "ExLlama_HF", "ExLlama", "AutoGPTQ", "GPTQ-for-LLaMa", "llama.cpp", "llamacpp_HF"], value="All", elem_classes='slim-dropdown')
with gr.Row():
with gr.Column():
with gr.Box():
with gr.Row():
with gr.Column():
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p')
shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k')
shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p')
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff')
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff')
shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')
with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty')
shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length')
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
with gr.Accordion("Learn more", open=False):
gr.Markdown("""
For a technical description of the parameters, the [transformers documentation](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig) is a good reference.
The best presets, according to the [Preset Arena](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md) experiment, are:
* Instruction following:
1) Divine Intellect
2) Big O
3) simple-1
4) Space Alien
5) StarChat
6) Titanic
7) tfs-with-top-a
8) Asterism
9) Contrastive Search
* Chat:
1) Midnight Enigma
2) Yara
3) Shortwave
### Temperature
Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.
### top_p
If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.
### top_k
Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.
### typical_p
If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.
### epsilon_cutoff
In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.
### eta_cutoff
In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.
### repetition_penalty
Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.
### repetition_penalty_range
The number of most recent tokens to consider for repetition penalty. 0 makes all tokens be used.
### encoder_repetition_penalty
Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.
### no_repeat_ngram_size
If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.
### min_length
Minimum generation length in tokens.
### penalty_alpha
Contrastive Search is enabled by setting this to greater than zero and unchecking "do_sample". It should be used with a low value of top_k, for instance, top_k = 4.
""", elem_classes="markdown")
with gr.Column():
create_chat_settings_menus()
with gr.Box():
with gr.Row():
with gr.Column():
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
with gr.Column():
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='For Contrastive Search. do_sample must be unchecked.')
shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams', info='For Beam Search, along with length_penalty and early_stopping.')
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
with gr.Box():
with gr.Row():
with gr.Column():
shared.gradio['truncation_length'] = gr.Slider(value=shared.settings['truncation_length'], minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas. For instance: "\\nYour Assistant:", "\\nThe assistant:"')
with gr.Column():
shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.')
shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.')
shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.')
shared.gradio['stream'] = gr.Checkbox(value=not shared.args.no_stream, label='Activate text streaming')
filter_by_loader.change(loaders.blacklist_samplers, filter_by_loader, gradio(loaders.list_all_samplers()), show_progress=False)
shared.gradio['preset_menu'].change(presets.load_preset_for_ui, gradio('preset_menu', 'interface_state'), gradio('interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a'))
def create_file_saving_menus():
# Text file saver
with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['file_saver']:
shared.gradio['save_filename'] = gr.Textbox(lines=1, label='File name')
shared.gradio['save_root'] = gr.Textbox(lines=1, label='File folder', info='For reference. Unchangeable.', interactive=False)
shared.gradio['save_contents'] = gr.Textbox(lines=10, label='File contents')
with gr.Row():
shared.gradio['save_confirm'] = gr.Button('Save', elem_classes="small-button")
shared.gradio['save_cancel'] = gr.Button('Cancel', elem_classes="small-button")
# Text file deleter
with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['file_deleter']:
shared.gradio['delete_filename'] = gr.Textbox(lines=1, label='File name')
shared.gradio['delete_root'] = gr.Textbox(lines=1, label='File folder', info='For reference. Unchangeable.', interactive=False)
with gr.Row():
shared.gradio['delete_confirm'] = gr.Button('Delete', elem_classes="small-button", variant='stop')
shared.gradio['delete_cancel'] = gr.Button('Cancel', elem_classes="small-button")
# Character saver/deleter
if shared.is_chat():
with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['character_saver']:
shared.gradio['save_character_filename'] = gr.Textbox(lines=1, label='File name', info='The character will be saved to your characters/ folder with this base filename.')
with gr.Row():
shared.gradio['save_character_confirm'] = gr.Button('Save', elem_classes="small-button")
shared.gradio['save_character_cancel'] = gr.Button('Cancel', elem_classes="small-button")
with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['character_deleter']:
gr.Markdown('Confirm the character deletion?')
with gr.Row():
shared.gradio['delete_character_confirm'] = gr.Button('Delete', elem_classes="small-button", variant='stop')
shared.gradio['delete_character_cancel'] = gr.Button('Cancel', elem_classes="small-button")
def create_file_saving_event_handlers():
shared.gradio['save_confirm'].click(
lambda x, y, z: utils.save_file(x + y, z), gradio('save_root', 'save_filename', 'save_contents'), None).then(
lambda: gr.update(visible=False), None, gradio('file_saver'))
shared.gradio['delete_confirm'].click(
lambda x, y: utils.delete_file(x + y), gradio('delete_root', 'delete_filename'), None).then(
lambda: gr.update(visible=False), None, gradio('file_deleter'))
shared.gradio['delete_cancel'].click(lambda: gr.update(visible=False), None, gradio('file_deleter'))
shared.gradio['save_cancel'].click(lambda: gr.update(visible=False), None, gradio('file_saver'))
if shared.is_chat():
shared.gradio['save_character_confirm'].click(
chat.save_character, gradio('name2', 'greeting', 'context', 'character_picture', 'save_character_filename'), None).then(
lambda: gr.update(visible=False), None, gradio('character_saver'))
shared.gradio['delete_character_confirm'].click(
chat.delete_character, gradio('character_menu'), None).then(
lambda: gr.update(visible=False), None, gradio('character_deleter')).then(
lambda: gr.update(choices=utils.get_available_characters()), None, gradio('character_menu'))
shared.gradio['save_character_cancel'].click(lambda: gr.update(visible=False), None, gradio('character_saver'))
shared.gradio['delete_character_cancel'].click(lambda: gr.update(visible=False), None, gradio('character_deleter'))
shared.gradio['save_preset'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
presets.generate_preset_yaml, gradio('interface_state'), gradio('save_contents')).then(
lambda: 'presets/', None, gradio('save_root')).then(
lambda: 'My Preset.yaml', None, gradio('save_filename')).then(
lambda: gr.update(visible=True), None, gradio('file_saver'))
shared.gradio['delete_preset'].click(
lambda x: f'{x}.yaml', gradio('preset_menu'), gradio('delete_filename')).then(
lambda: 'presets/', None, gradio('delete_root')).then(
lambda: gr.update(visible=True), None, gradio('file_deleter'))
if not shared.args.multi_user:
def load_session(session, state):
with open(Path(f'logs/{session}.json'), 'r') as f:
state.update(json.loads(f.read()))
if shared.is_chat():
chat.save_persistent_history(state['history'], state['character_menu'], state['mode'])
return state
if shared.is_chat():
shared.gradio['save_session'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda x: json.dumps(x, indent=4), gradio('interface_state'), gradio('save_contents')).then(
lambda: 'logs/', None, gradio('save_root')).then(
lambda x: f'session_{shared.get_mode()}_{x + "_" if x not in ["None", None, ""] else ""}{utils.current_time()}.json', gradio('character_menu'), gradio('save_filename')).then(
lambda: gr.update(visible=True), None, gradio('file_saver'))
shared.gradio['session_menu'].change(
load_session, gradio('session_menu', 'interface_state'), gradio('interface_state')).then(
ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False).then(
chat.redraw_html, shared.reload_inputs, gradio('display'))
else:
shared.gradio['save_session'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda x: json.dumps(x, indent=4), gradio('interface_state'), gradio('save_contents')).then(
lambda: 'logs/', None, gradio('save_root')).then(
lambda: f'session_{shared.get_mode()}_{utils.current_time()}.json', None, gradio('save_filename')).then(
lambda: gr.update(visible=True), None, gradio('file_saver'))
shared.gradio['session_menu'].change(
load_session, gradio('session_menu', 'interface_state'), gradio('interface_state')).then(
ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False)
shared.gradio['delete_session'].click(
lambda x: f'{x}.json', gradio('session_menu'), gradio('delete_filename')).then(
lambda: 'logs/', None, gradio('delete_root')).then(
lambda: gr.update(visible=True), None, gradio('file_deleter'))
def set_interface_arguments(interface_mode, extensions, bool_active):
modes = ["default", "notebook", "chat", "cai_chat"]
cmd_list = vars(shared.args)
bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]
shared.args.extensions = extensions
for k in modes[1:]:
setattr(shared.args, k, False)
if interface_mode != "default":
setattr(shared.args, interface_mode, True)
for k in bool_list:
setattr(shared.args, k, False)
for k in bool_active:
setattr(shared.args, k, True)
shared.need_restart = True
def create_interface():
# Defining some variables
gen_events = []
default_preset = shared.settings['preset']
default_text = load_prompt(shared.settings['prompt'])
title = 'Text generation web UI'
# Authentication variables
auth = None
gradio_auth_creds = []
if shared.args.gradio_auth:
gradio_auth_creds += [x.strip() for x in shared.args.gradio_auth.strip('"').replace('\n', '').split(',') if x.strip()]
if shared.args.gradio_auth_path is not None:
with open(shared.args.gradio_auth_path, 'r', encoding="utf8") as file:
for line in file.readlines():
gradio_auth_creds += [x.strip() for x in line.split(',') if x.strip()]
if gradio_auth_creds:
auth = [tuple(cred.split(':')) for cred in gradio_auth_creds]
# Importing the extension files and executing their setup() functions
if shared.args.extensions is not None and len(shared.args.extensions) > 0:
extensions_module.load_extensions()
# Forcing some events to be triggered on page load
shared.persistent_interface_state.update({
'loader': shared.args.loader or 'Transformers',
})
if shared.is_chat():
shared.persistent_interface_state.update({
'mode': shared.settings['mode'],
'character_menu': shared.args.character or shared.settings['character'],
'instruction_template': shared.settings['instruction_template']
})
if Path("cache/pfp_character.png").exists():
Path("cache/pfp_character.png").unlink()
# css/js strings
css = ui.css if not shared.is_chat() else ui.css + ui.chat_css
js = ui.main_js if not shared.is_chat() else ui.main_js + ui.chat_js
css += apply_extensions('css')
js += apply_extensions('js')
with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as shared.gradio['interface']:
if Path("notification.mp3").exists():
shared.gradio['audio_notification'] = gr.Audio(interactive=False, value="notification.mp3", elem_id="audio_notification", visible=False)
audio_notification_js = "document.querySelector('#audio_notification audio')?.play();"
else:
audio_notification_js = ""
# Floating menus for saving/deleting files
create_file_saving_menus()
# Create chat mode interface
if shared.is_chat():
shared.input_elements = ui.list_interface_input_elements()
shared.gradio.update({
'interface_state': gr.State({k: None for k in shared.input_elements}),
'Chat input': gr.State(),
'dummy': gr.State(),
'history': gr.State({'internal': [], 'visible': []}),
})
with gr.Tab('Text generation', elem_id='main'):
shared.gradio['display'] = gr.HTML(value=chat_html_wrapper({'internal': [], 'visible': []}, shared.settings['name1'], shared.settings['name2'], 'chat', 'cai-chat'))
shared.gradio['textbox'] = gr.Textbox(label='Input')
with gr.Row():
shared.gradio['Stop'] = gr.Button('Stop', elem_id='stop')
shared.gradio['Generate'] = gr.Button('Generate', elem_id='Generate', variant='primary')
shared.gradio['Continue'] = gr.Button('Continue')
with gr.Row():
shared.gradio['Impersonate'] = gr.Button('Impersonate')
shared.gradio['Regenerate'] = gr.Button('Regenerate')
shared.gradio['Remove last'] = gr.Button('Remove last')
with gr.Row():
shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
shared.gradio['Replace last reply'] = gr.Button('Replace last reply')
shared.gradio['Send dummy message'] = gr.Button('Send dummy message')
shared.gradio['Send dummy reply'] = gr.Button('Send dummy reply')
with gr.Row():
shared.gradio['Clear history'] = gr.Button('Clear history')
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant='stop', visible=False)
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
with gr.Row():
shared.gradio['start_with'] = gr.Textbox(label='Start reply with', placeholder='Sure thing!', value=shared.settings['start_with'])
with gr.Row():
shared.gradio['mode'] = gr.Radio(choices=['chat', 'chat-instruct', 'instruct'], value=shared.settings['mode'] if shared.settings['mode'] in ['chat', 'instruct', 'chat-instruct'] else 'chat', label='Mode', info='Defines how the chat prompt is generated. In instruct and chat-instruct modes, the instruction template selected under "Chat settings" must match the current model.')
shared.gradio['chat_style'] = gr.Dropdown(choices=utils.get_available_chat_styles(), label='Chat style', value=shared.settings['chat_style'], visible=shared.settings['mode'] != 'instruct')
with gr.Tab('Chat settings', elem_id='chat-settings'):
with gr.Tab("Character"):
with gr.Row():
with gr.Column(scale=8):
with gr.Row():
shared.gradio['character_menu'] = gr.Dropdown(value='None', choices=utils.get_available_characters(), label='Character', elem_id='character-menu', info='Used in chat and chat-instruct modes.', elem_classes='slim-dropdown')
ui.create_refresh_button(shared.gradio['character_menu'], lambda: None, lambda: {'choices': utils.get_available_characters()}, 'refresh-button')
shared.gradio['save_character'] = gr.Button('๐พ', elem_classes='refresh-button')
shared.gradio['delete_character'] = gr.Button('๐๏ธ', elem_classes='refresh-button')
shared.gradio['name1'] = gr.Textbox(value=shared.settings['name1'], lines=1, label='Your name')
shared.gradio['name2'] = gr.Textbox(value=shared.settings['name2'], lines=1, label='Character\'s name')
shared.gradio['context'] = gr.Textbox(value=shared.settings['context'], lines=4, label='Context')
shared.gradio['greeting'] = gr.Textbox(value=shared.settings['greeting'], lines=4, label='Greeting')
with gr.Column(scale=1):
shared.gradio['character_picture'] = gr.Image(label='Character picture', type='pil')
shared.gradio['your_picture'] = gr.Image(label='Your picture', type='pil', value=Image.open(Path('cache/pfp_me.png')) if Path('cache/pfp_me.png').exists() else None)
with gr.Tab("Instruction template"):
with gr.Row():
with gr.Row():
shared.gradio['instruction_template'] = gr.Dropdown(choices=utils.get_available_instruction_templates(), label='Instruction template', value='None', info='Change this according to the model/LoRA that you are using. Used in instruct and chat-instruct modes.', elem_classes='slim-dropdown')
ui.create_refresh_button(shared.gradio['instruction_template'], lambda: None, lambda: {'choices': utils.get_available_instruction_templates()}, 'refresh-button')
shared.gradio['save_template'] = gr.Button('๐พ', elem_classes='refresh-button')
shared.gradio['delete_template'] = gr.Button('๐๏ธ ', elem_classes='refresh-button')
shared.gradio['name1_instruct'] = gr.Textbox(value='', lines=2, label='User string')
shared.gradio['name2_instruct'] = gr.Textbox(value='', lines=1, label='Bot string')
shared.gradio['context_instruct'] = gr.Textbox(value='', lines=4, label='Context')
shared.gradio['turn_template'] = gr.Textbox(value=shared.settings['turn_template'], lines=1, label='Turn template', info='Used to precisely define the placement of spaces and new line characters in instruction prompts.')
with gr.Row():
shared.gradio['chat-instruct_command'] = gr.Textbox(value=shared.settings['chat-instruct_command'], lines=4, label='Command for chat-instruct mode', info='<|character|> gets replaced by the bot name, and <|prompt|> gets replaced by the regular chat prompt.')
with gr.Tab('Chat history'):
with gr.Row():
with gr.Column():
shared.gradio['download'] = gr.File(label="Download")
shared.gradio['download_button'] = gr.Button(value='Refresh')
with gr.Column():
shared.gradio['upload_chat_history'] = gr.File(type='binary', file_types=['.json', '.txt'], label="Upload")
with gr.Tab('Upload character'):
with gr.Tab('YAML or JSON'):
with gr.Row():
shared.gradio['upload_json'] = gr.File(type='binary', file_types=['.json', '.yaml'], label='JSON or YAML File')
shared.gradio['upload_img_bot'] = gr.Image(type='pil', label='Profile Picture (optional)')
shared.gradio['Submit character'] = gr.Button(value='Submit', interactive=False)
with gr.Tab('TavernAI PNG'):
with gr.Row():
with gr.Column():
shared.gradio['upload_img_tavern'] = gr.Image(type='pil', label='TavernAI PNG File', elem_id="upload_img_tavern")
shared.gradio['tavern_json'] = gr.State()
with gr.Column():
shared.gradio['tavern_name'] = gr.Textbox(value='', lines=1, label='Name', interactive=False)
shared.gradio['tavern_desc'] = gr.Textbox(value='', lines=4, max_lines=4, label='Description', interactive=False)
shared.gradio['Submit tavern character'] = gr.Button(value='Submit', interactive=False)
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
# Create notebook mode interface
elif shared.args.notebook:
shared.input_elements = ui.list_interface_input_elements()
shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
shared.gradio['last_input'] = gr.State('')
with gr.Tab("Text generation", elem_id="main"):
with gr.Row():
with gr.Column(scale=4):
with gr.Tab('Raw'):
shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox", lines=27)
with gr.Tab('Markdown'):
shared.gradio['markdown_render'] = gr.Button('Render')
shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
with gr.Row():
shared.gradio['Generate'] = gr.Button('Generate', variant='primary', elem_classes="small-button")
shared.gradio['Stop'] = gr.Button('Stop', elem_classes="small-button")
shared.gradio['Undo'] = gr.Button('Undo', elem_classes="small-button")
shared.gradio['Regenerate'] = gr.Button('Regenerate', elem_classes="small-button")
with gr.Column(scale=1):
gr.HTML('<div style="padding-bottom: 13px"></div>')
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
with gr.Row():
shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), value='None', label='Prompt', elem_classes='slim-dropdown')
ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, lambda: {'choices': utils.get_available_prompts()}, ['refresh-button', 'refresh-button-small'])
shared.gradio['save_prompt'] = gr.Button('๐พ', elem_classes=['refresh-button', 'refresh-button-small'])
shared.gradio['delete_prompt'] = gr.Button('๐๏ธ', elem_classes=['refresh-button', 'refresh-button-small'])
shared.gradio['count_tokens'] = gr.Button('Count tokens')
shared.gradio['status'] = gr.Markdown('')
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
# Create default mode interface
else:
shared.input_elements = ui.list_interface_input_elements()
shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
shared.gradio['last_input'] = gr.State('')
with gr.Tab("Text generation", elem_id="main"):
with gr.Row():
with gr.Column():
shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox_default", lines=27, label='Input')
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
with gr.Row():
shared.gradio['Generate'] = gr.Button('Generate', variant='primary')
shared.gradio['Stop'] = gr.Button('Stop')
shared.gradio['Continue'] = gr.Button('Continue')
shared.gradio['count_tokens'] = gr.Button('Count tokens')
with gr.Row():
shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), value='None', label='Prompt', elem_classes='slim-dropdown')
ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, lambda: {'choices': utils.get_available_prompts()}, 'refresh-button')
shared.gradio['save_prompt'] = gr.Button('๐พ', elem_classes='refresh-button')
shared.gradio['delete_prompt'] = gr.Button('๐๏ธ', elem_classes='refresh-button')
shared.gradio['status'] = gr.Markdown('')
with gr.Column():
with gr.Tab('Raw'):
shared.gradio['output_textbox'] = gr.Textbox(elem_classes="textbox_default_output", lines=27, label='Output')
with gr.Tab('Markdown'):
shared.gradio['markdown_render'] = gr.Button('Render')
shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
# Model tab
with gr.Tab("Model", elem_id="model-tab"):
create_model_menus()
# Training tab
with gr.Tab("Training", elem_id="training-tab"):
training.create_train_interface()
# Session tab
with gr.Tab("Session", elem_id="session-tab"):
modes = ["default", "notebook", "chat"]
current_mode = "default"
for mode in modes[1:]:
if getattr(shared.args, mode):
current_mode = mode
break
cmd_list = vars(shared.args)
bool_list = sorted([k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes + ui.list_model_elements()])
bool_active = [k for k in bool_list if vars(shared.args)[k]]
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['interface_modes_menu'] = gr.Dropdown(choices=modes, value=current_mode, label="Mode", elem_classes='slim-dropdown')
shared.gradio['reset_interface'] = gr.Button("Apply and restart", elem_classes="small-button", variant="primary")
shared.gradio['toggle_dark_mode'] = gr.Button('Toggle ๐ก', elem_classes="small-button")
with gr.Row():
with gr.Column():
shared.gradio['extensions_menu'] = gr.CheckboxGroup(choices=utils.get_available_extensions(), value=shared.args.extensions, label="Available extensions", info='Note that some of these extensions may require manually installing Python requirements through the command: pip install -r extensions/extension_name/requirements.txt', elem_classes='checkboxgroup-table')
with gr.Column():
shared.gradio['bool_menu'] = gr.CheckboxGroup(choices=bool_list, value=bool_active, label="Boolean command-line flags", elem_classes='checkboxgroup-table')
with gr.Column():
if not shared.args.multi_user:
with gr.Row():
shared.gradio['session_menu'] = gr.Dropdown(choices=utils.get_available_sessions(), value='None', label='Session', elem_classes='slim-dropdown', info='When saving a session, make sure to keep the initial part of the filename (session_chat, session_notebook, or session_default), otherwise it will not appear on this list afterwards.')
ui.create_refresh_button(shared.gradio['session_menu'], lambda: None, lambda: {'choices': utils.get_available_sessions()}, ['refresh-button'])
shared.gradio['save_session'] = gr.Button('๐พ', elem_classes=['refresh-button'])
shared.gradio['delete_session'] = gr.Button('๐๏ธ', elem_classes=['refresh-button'])
extension_name = gr.Textbox(lines=1, label='Install or update an extension', info='Enter the GitHub URL below and press Enter. For a list of extensions, see: https://github.com/oobabooga/text-generation-webui-extensions โ ๏ธ WARNING โ ๏ธ : extensions can execute arbitrary code. Make sure to inspect their source code before activating them.')
extension_status = gr.Markdown()
extension_name.submit(
clone_or_pull_repository, extension_name, extension_status, show_progress=False).then(
lambda: gr.update(choices=utils.get_available_extensions(), value=shared.args.extensions), None, gradio('extensions_menu'))
# Reset interface event
shared.gradio['reset_interface'].click(
set_interface_arguments, gradio('interface_modes_menu', 'extensions_menu', 'bool_menu'), None).then(
lambda: None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;padding-top:20%;margin:0;height:100vh;color:lightgray;text-align:center;background:var(--body-background-fill)">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500); return []}')
shared.gradio['toggle_dark_mode'].click(lambda: None, None, None, _js='() => {document.getElementsByTagName("body")[0].classList.toggle("dark")}')
# chat mode event handlers
if shared.is_chat():
shared.input_params = gradio('Chat input', 'start_with', 'interface_state')
clear_arr = gradio('Clear history-confirm', 'Clear history', 'Clear history-cancel')
shared.reload_inputs = gradio('history', 'name1', 'name2', 'mode', 'chat_style')
gen_events.append(shared.gradio['Generate'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda x: (x, ''), gradio('textbox'), gradio('Chat input', 'textbox'), show_progress=False).then(
chat.generate_chat_reply_wrapper, shared.input_params, gradio('display', 'history'), show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['textbox'].submit(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda x: (x, ''), gradio('textbox'), gradio('Chat input', 'textbox'), show_progress=False).then(
chat.generate_chat_reply_wrapper, shared.input_params, gradio('display', 'history'), show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['Regenerate'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
partial(chat.generate_chat_reply_wrapper, regenerate=True), shared.input_params, gradio('display', 'history'), show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['Continue'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
partial(chat.generate_chat_reply_wrapper, _continue=True), shared.input_params, gradio('display', 'history'), show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['Impersonate'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda x: x, gradio('textbox'), gradio('Chat input'), show_progress=False).then(
chat.impersonate_wrapper, shared.input_params, gradio('textbox'), show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
shared.gradio['Replace last reply'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.replace_last_reply, gradio('textbox', 'interface_state'), gradio('history')).then(
lambda: '', None, gradio('textbox'), show_progress=False).then(
chat.redraw_html, shared.reload_inputs, gradio('display')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)
shared.gradio['Send dummy message'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.send_dummy_message, gradio('textbox', 'interface_state'), gradio('history')).then(
lambda: '', None, gradio('textbox'), show_progress=False).then(
chat.redraw_html, shared.reload_inputs, gradio('display')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)
shared.gradio['Send dummy reply'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.send_dummy_reply, gradio('textbox', 'interface_state'), gradio('history')).then(
lambda: '', None, gradio('textbox'), show_progress=False).then(
chat.redraw_html, shared.reload_inputs, gradio('display')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)
shared.gradio['Clear history'].click(lambda: [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, clear_arr)
shared.gradio['Clear history-cancel'].click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
shared.gradio['Clear history-confirm'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr).then(
chat.clear_chat_log, gradio('interface_state'), gradio('history')).then(
chat.redraw_html, shared.reload_inputs, gradio('display')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)
shared.gradio['Remove last'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.remove_last_message, gradio('history'), gradio('textbox', 'history'), show_progress=False).then(
chat.redraw_html, shared.reload_inputs, gradio('display')).then(
chat.save_persistent_history, gradio('history', 'character_menu', 'mode'), None)
shared.gradio['character_menu'].change(
partial(chat.load_character, instruct=False), gradio('character_menu', 'name1', 'name2'), gradio('name1', 'name2', 'character_picture', 'greeting', 'context', 'dummy')).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.load_persistent_history, gradio('interface_state'), gradio('history')).then(
chat.redraw_html, shared.reload_inputs, gradio('display'))
shared.gradio['Stop'].click(
stop_everything_event, None, None, queue=False, cancels=gen_events if shared.args.no_stream else None).then(
chat.redraw_html, shared.reload_inputs, gradio('display'))
shared.gradio['mode'].change(
lambda x: gr.update(visible=x != 'instruct'), gradio('mode'), gradio('chat_style'), show_progress=False).then(
chat.redraw_html, shared.reload_inputs, gradio('display'))
shared.gradio['chat_style'].change(chat.redraw_html, shared.reload_inputs, gradio('display'))
shared.gradio['instruction_template'].change(
partial(chat.load_character, instruct=True), gradio('instruction_template', 'name1_instruct', 'name2_instruct'), gradio('name1_instruct', 'name2_instruct', 'dummy', 'dummy', 'context_instruct', 'turn_template'))
shared.gradio['upload_chat_history'].upload(
chat.load_history, gradio('upload_chat_history', 'history'), gradio('history')).then(
chat.redraw_html, shared.reload_inputs, gradio('display'))
shared.gradio['Copy last reply'].click(chat.send_last_reply_to_input, gradio('history'), gradio('textbox'), show_progress=False)
# Save/delete a character
shared.gradio['save_character'].click(
lambda x: x, gradio('name2'), gradio('save_character_filename')).then(
lambda: gr.update(visible=True), None, gradio('character_saver'))
shared.gradio['delete_character'].click(lambda: gr.update(visible=True), None, gradio('character_deleter'))
shared.gradio['save_template'].click(
lambda: 'My Template.yaml', None, gradio('save_filename')).then(
lambda: 'characters/instruction-following/', None, gradio('save_root')).then(
chat.generate_instruction_template_yaml, gradio('name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template'), gradio('save_contents')).then(
lambda: gr.update(visible=True), None, gradio('file_saver'))
shared.gradio['delete_template'].click(
lambda x: f'{x}.yaml', gradio('instruction_template'), gradio('delete_filename')).then(
lambda: 'characters/instruction-following/', None, gradio('delete_root')).then(
lambda: gr.update(visible=True), None, gradio('file_deleter'))
shared.gradio['download_button'].click(chat.save_history_at_user_request, gradio('history', 'character_menu', 'mode'), gradio('download'))
shared.gradio['Submit character'].click(chat.upload_character, gradio('upload_json', 'upload_img_bot'), gradio('character_menu'))
shared.gradio['upload_json'].upload(lambda: gr.update(interactive=True), None, gradio('Submit character'))
shared.gradio['upload_json'].clear(lambda: gr.update(interactive=False), None, gradio('Submit character'))
shared.gradio['Submit tavern character'].click(chat.upload_tavern_character, gradio('upload_img_tavern', 'tavern_json'), gradio('character_menu'))
shared.gradio['upload_img_tavern'].upload(chat.check_tavern_character, gradio('upload_img_tavern'), gradio('tavern_name', 'tavern_desc', 'tavern_json', 'Submit tavern character'), show_progress=False)
shared.gradio['upload_img_tavern'].clear(lambda: (None, None, None, gr.update(interactive=False)), None, gradio('tavern_name', 'tavern_desc', 'tavern_json', 'Submit tavern character'), show_progress=False)
shared.gradio['your_picture'].change(
chat.upload_your_profile_picture, gradio('your_picture'), None).then(
partial(chat.redraw_html, reset_cache=True), shared.reload_inputs, gradio('display'))
# notebook/default modes event handlers
else:
shared.input_params = gradio('textbox', 'interface_state')
if shared.args.notebook:
output_params = gradio('textbox', 'html')
else:
output_params = gradio('output_textbox', 'html')
gen_events.append(shared.gradio['Generate'].click(
lambda x: x, gradio('textbox'), gradio('last_input')).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
gen_events.append(shared.gradio['textbox'].submit(
lambda x: x, gradio('textbox'), gradio('last_input')).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
if shared.args.notebook:
shared.gradio['Undo'].click(lambda x: x, gradio('last_input'), gradio('textbox'), show_progress=False)
shared.gradio['markdown_render'].click(lambda x: x, gradio('textbox'), gradio('markdown'), queue=False)
gen_events.append(shared.gradio['Regenerate'].click(
lambda x: x, gradio('last_input'), gradio('textbox'), show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
else:
shared.gradio['markdown_render'].click(lambda x: x, gradio('output_textbox'), gradio('markdown'), queue=False)
gen_events.append(shared.gradio['Continue'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
generate_reply_wrapper, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=False).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[1]; element.scrollTop = element.scrollHeight}")
)
shared.gradio['Stop'].click(stop_everything_event, None, None, queue=False, cancels=gen_events if shared.args.no_stream else None)
shared.gradio['prompt_menu'].change(load_prompt, gradio('prompt_menu'), gradio('textbox'), show_progress=False)
shared.gradio['save_prompt'].click(
lambda x: x, gradio('textbox'), gradio('save_contents')).then(
lambda: 'prompts/', None, gradio('save_root')).then(
lambda: utils.current_time() + '.txt', None, gradio('save_filename')).then(
lambda: gr.update(visible=True), None, gradio('file_saver'))
shared.gradio['delete_prompt'].click(
lambda: 'prompts/', None, gradio('delete_root')).then(
lambda x: x + '.txt', gradio('prompt_menu'), gradio('delete_filename')).then(
lambda: gr.update(visible=True), None, gradio('file_deleter'))
shared.gradio['count_tokens'].click(count_tokens, gradio('textbox'), gradio('status'), show_progress=False)
create_file_saving_event_handlers()
if shared.settings['dark_theme']:
shared.gradio['interface'].load(lambda: None, None, None, _js="() => document.getElementsByTagName('body')[0].classList.add('dark')")
shared.gradio['interface'].load(lambda: None, None, None, _js=f"() => {{{js}}}")
shared.gradio['interface'].load(partial(ui.apply_interface_values, {}, use_persistent=True), None, gradio(ui.list_interface_input_elements()), show_progress=False)
if shared.is_chat():
shared.gradio['interface'].load(chat.redraw_html, shared.reload_inputs, gradio('display'))
# Extensions tabs
extensions_module.create_extensions_tabs()
# Extensions block
extensions_module.create_extensions_block()
# Launch the interface
shared.gradio['interface'].queue()
with OpenMonkeyPatch():
if shared.args.listen:
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_name=shared.args.listen_host or '0.0.0.0', server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)
else:
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)
if __name__ == "__main__":
# Loading custom settings
settings_file = None
if shared.args.settings is not None and Path(shared.args.settings).exists():
settings_file = Path(shared.args.settings)
elif Path('settings.yaml').exists():
settings_file = Path('settings.yaml')
elif Path('settings.json').exists():
settings_file = Path('settings.json')
if settings_file is not None:
logger.info(f"Loading settings from {settings_file}...")
file_contents = open(settings_file, 'r', encoding='utf-8').read()
new_settings = json.loads(file_contents) if settings_file.suffix == "json" else yaml.safe_load(file_contents)
for item in new_settings:
shared.settings[item] = new_settings[item]
# Set default model settings based on settings file
shared.model_config['.*'] = {
'wbits': 'None',
'model_type': 'None',
'groupsize': 'None',
'pre_layer': 0,
'mode': shared.settings['mode'],
'skip_special_tokens': shared.settings['skip_special_tokens'],
'custom_stopping_strings': shared.settings['custom_stopping_strings'],
'truncation_length': shared.settings['truncation_length'],
'n_gqa': 0,
'rms_norm_eps': 0,
}
shared.model_config.move_to_end('.*', last=False) # Move to the beginning
# Default extensions
extensions_module.available_extensions = utils.get_available_extensions()
if shared.is_chat():
for extension in shared.settings['chat_default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
else:
for extension in shared.settings['default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
available_models = utils.get_available_models()
# Model defined through --model
if shared.args.model is not None:
shared.model_name = shared.args.model
# Select the model from a command-line menu
elif shared.args.model_menu:
if len(available_models) == 0:
logger.error('No models are available! Please download at least one.')
sys.exit(0)
else:
print('The following models are available:\n')
for i, model in enumerate(available_models):
print(f'{i+1}. {model}')
print(f'\nWhich one do you want to load? 1-{len(available_models)}\n')
i = int(input()) - 1
print()
shared.model_name = available_models[i]
# If any model has been selected, load it
if shared.model_name != 'None':
model_settings = get_model_settings_from_yamls(shared.model_name)
shared.settings.update(model_settings) # hijacking the interface defaults
update_model_parameters(model_settings, initial=True) # hijacking the command-line arguments
# Load the model
shared.model, shared.tokenizer = load_model(shared.model_name)
if shared.args.lora:
add_lora_to_model(shared.args.lora)
shared.generation_lock = Lock()
# Launch the web UI
create_interface()
while True:
time.sleep(0.5)
if shared.need_restart:
shared.need_restart = False
time.sleep(0.5)
shared.gradio['interface'].close()
time.sleep(0.5)
create_interface()
|