File size: 12,906 Bytes
ba553c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import gc
import os
import re
import time
from pathlib import Path
import hashlib

import torch
import transformers
from accelerate import infer_auto_device_map, init_empty_weights
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)

import modules.shared as shared
from modules import llama_attn_hijack, sampler_hijack
from modules.logging_colors import logger
from modules.models_settings import infer_loader

transformers.logging.set_verbosity_error()

local_rank = None
if shared.args.deepspeed:
    import deepspeed
    from transformers.deepspeed import (
        HfDeepSpeedConfig,
        is_deepspeed_zero3_enabled
    )

    from modules.deepspeed_parameters import generate_ds_config

    # Distributed setup
    local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
    world_size = int(os.getenv("WORLD_SIZE", "1"))
    torch.cuda.set_device(local_rank)
    deepspeed.init_distributed()
    ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
    dschf = HfDeepSpeedConfig(ds_config)  # Keep this object alive for the Transformers integration

sampler_hijack.hijack_samplers()


def load_model(model_name, loader=None):
    logger.info(f"Loading {model_name}...")
    t0 = time.time()

    shared.is_seq2seq = False
    load_func_map = {
        'Transformers': huggingface_loader,
        'AutoGPTQ': AutoGPTQ_loader,
        'GPTQ-for-LLaMa': GPTQ_loader,
        'llama.cpp': llamacpp_loader,
        'llamacpp_HF': llamacpp_HF_loader,
        'RWKV': RWKV_loader,
        'ExLlama': ExLlama_loader,
        'ExLlama_HF': ExLlama_HF_loader
    }

    p = Path(model_name)
    if p.exists():
        model_name = p.parts[-1]

    if loader is None:
        if shared.args.loader is not None:
            loader = shared.args.loader
        else:
            loader = infer_loader(model_name)
            if loader is None:
                logger.error('The path to the model does not exist. Exiting.')
                return None, None

    shared.args.loader = loader
    output = load_func_map[loader](model_name)
    if type(output) is tuple:
        model, tokenizer = output
    else:
        model = output
        if model is None:
            return None, None
        else:
            tokenizer = load_tokenizer(model_name, model)

    # Hijack attention with xformers
    if any((shared.args.xformers, shared.args.sdp_attention)):
        llama_attn_hijack.hijack_llama_attention()

    logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n")
    return model, tokenizer


def load_tokenizer(model_name, model):
    tokenizer = None
    path_to_model = Path(f"{shared.args.model_dir}/{model_name}/")
    if any(s in model_name.lower() for s in ['gpt-4chan', 'gpt4chan']) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists():
        tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/"))
    elif path_to_model.exists():
        try:
            tokenizer = AutoTokenizer.from_pretrained(
                path_to_model,
                trust_remote_code=shared.args.trust_remote_code,
                use_fast=False
            )
        except ValueError:
            tokenizer = AutoTokenizer.from_pretrained(
                path_to_model,
                trust_remote_code=shared.args.trust_remote_code,
                use_fast=True
            )

    if tokenizer.__class__.__name__ == 'LlamaTokenizer':
        pairs = [
            ['tokenizer_config.json', '516c6167c884793a738c440e29ccb80c15e1493ffc965affc69a1a8ddef4572a'],
            ['special_tokens_map.json', 'ff3b4a612c4e447acb02d40071bddd989fe0da87eb5b7fe0dbadfc4f74de7531']
        ]

        for pair in pairs:
            p = path_to_model / pair[0]
            if p.exists():
                with open(p, "rb") as f:
                    bytes = f.read()

                file_hash = hashlib.sha256(bytes).hexdigest()
                if file_hash != pair[1]:
                    logger.warning(f"{p} is different from the original LlamaTokenizer file. It is either customized or outdated.")

    return tokenizer


def huggingface_loader(model_name):
    path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
    if 'chatglm' in model_name.lower():
        LoaderClass = AutoModel
    else:
        config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
        if config.to_dict().get("is_encoder_decoder", False):
            LoaderClass = AutoModelForSeq2SeqLM
            shared.is_seq2seq = True
        else:
            LoaderClass = AutoModelForCausalLM

    # Load the model in simple 16-bit mode by default
    if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]):
        model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=shared.args.trust_remote_code)
        if torch.backends.mps.is_available():
            device = torch.device('mps')
            model = model.to(device)
        else:
            model = model.cuda()

    # DeepSpeed ZeRO-3
    elif shared.args.deepspeed:
        model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
        model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
        model.module.eval()  # Inference
        logger.info(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")

    # Custom
    else:
        params = {
            "low_cpu_mem_usage": True,
            "trust_remote_code": shared.args.trust_remote_code
        }

        if not any((shared.args.cpu, torch.cuda.is_available(), torch.backends.mps.is_available())):
            logger.warning("torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.")
            shared.args.cpu = True

        if shared.args.cpu:
            params["torch_dtype"] = torch.float32
        else:
            params["device_map"] = 'auto'
            if shared.args.load_in_4bit:

                # See https://github.com/huggingface/transformers/pull/23479/files
                # and https://huggingface.co/blog/4bit-transformers-bitsandbytes
                quantization_config_params = {
                    'load_in_4bit': True,
                    'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None,
                    'bnb_4bit_quant_type': shared.args.quant_type,
                    'bnb_4bit_use_double_quant': shared.args.use_double_quant,
                }

                logger.warning("Using the following 4-bit params: " + str(quantization_config_params))
                params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params)

            elif shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)):
                params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
            elif shared.args.load_in_8bit:
                params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
            elif shared.args.bf16:
                params["torch_dtype"] = torch.bfloat16
            else:
                params["torch_dtype"] = torch.float16

            params['max_memory'] = get_max_memory_dict()
            if shared.args.disk:
                params["offload_folder"] = shared.args.disk_cache_dir

        checkpoint = Path(f'{shared.args.model_dir}/{model_name}')
        if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
            config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=shared.args.trust_remote_code)
            with init_empty_weights():
                model = LoaderClass.from_config(config, trust_remote_code=shared.args.trust_remote_code)

            model.tie_weights()
            params['device_map'] = infer_auto_device_map(
                model,
                dtype=torch.int8,
                max_memory=params['max_memory'],
                no_split_module_classes=model._no_split_modules
            )

        model = LoaderClass.from_pretrained(checkpoint, **params)

    return model


def RWKV_loader(model_name):
    from modules.RWKV import RWKVModel, RWKVTokenizer

    model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
    tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))
    return model, tokenizer


def llamacpp_loader(model_name):
    from modules.llamacpp_model import LlamaCppModel

    path = Path(f'{shared.args.model_dir}/{model_name}')
    if path.is_file():
        model_file = path
    else:
        model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0]

    logger.info(f"llama.cpp weights detected: {model_file}\n")
    model, tokenizer = LlamaCppModel.from_pretrained(model_file)
    return model, tokenizer


def llamacpp_HF_loader(model_name):
    from modules.llamacpp_hf import LlamacppHF

    for fname in ["oobabooga_llama-tokenizer", "llama-tokenizer"]:
        path = Path(f'{shared.args.model_dir}/{fname}')
        if path.exists():
            break
    else:
        logger.error("Could not load the model because a tokenizer in transformers format was not found. Please download oobabooga/llama-tokenizer.")
        return None, None

    tokenizer = AutoTokenizer.from_pretrained(
        path,
        trust_remote_code=shared.args.trust_remote_code,
        use_fast=False
    )

    model = LlamacppHF.from_pretrained(model_name)
    return model, tokenizer


def GPTQ_loader(model_name):

    # Monkey patch
    if shared.args.monkey_patch:
        logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.")
        from modules.monkey_patch_gptq_lora import load_model_llama

        model, _ = load_model_llama(model_name)

    # No monkey patch
    else:
        import modules.GPTQ_loader

        model = modules.GPTQ_loader.load_quantized(model_name)

    return model


def AutoGPTQ_loader(model_name):
    import modules.AutoGPTQ_loader

    return modules.AutoGPTQ_loader.load_quantized(model_name)


def ExLlama_loader(model_name):
    from modules.exllama import ExllamaModel

    model, tokenizer = ExllamaModel.from_pretrained(model_name)
    return model, tokenizer


def ExLlama_HF_loader(model_name):
    from modules.exllama_hf import ExllamaHF

    return ExllamaHF.from_pretrained(model_name)


def get_max_memory_dict():
    max_memory = {}
    if shared.args.gpu_memory:
        memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory))
        for i in range(len(memory_map)):
            max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]

        max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
        max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory

    # If --auto-devices is provided standalone, try to get a reasonable value
    # for the maximum memory of device :0
    elif shared.args.auto_devices:
        total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
        suggestion = round((total_mem - 1000) / 1000) * 1000
        if total_mem - suggestion < 800:
            suggestion -= 1000

        suggestion = int(round(suggestion / 1000))
        logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.")
        max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'}

    return max_memory if len(max_memory) > 0 else None


def clear_torch_cache():
    gc.collect()
    if not shared.args.cpu:
        torch.cuda.empty_cache()


def unload_model():
    shared.model = shared.tokenizer = None
    shared.lora_names = []
    shared.model_dirty_from_training = False
    clear_torch_cache()


def reload_model():
    unload_model()
    shared.model, shared.tokenizer = load_model(shared.model_name)