Spaces:
Runtime error
Runtime error
File size: 2,908 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmdet.models.dense_heads.fcos_head import FCOSHead
from ..builder import HEADS
@HEADS.register_module()
class NASFCOSHead(FCOSHead):
"""Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_.
It is quite similar with FCOS head, except for the searched structure of
classification branch and bbox regression branch, where a structure of
"dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead.
"""
def __init__(self, *args, init_cfg=None, **kwargs):
if init_cfg is None:
init_cfg = [
dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']),
dict(
type='Normal',
std=0.01,
override=[
dict(name='conv_reg'),
dict(name='conv_centerness'),
dict(
name='conv_cls',
type='Normal',
std=0.01,
bias_prob=0.01)
]),
]
super(NASFCOSHead, self).__init__(*args, init_cfg=init_cfg, **kwargs)
def _init_layers(self):
"""Initialize layers of the head."""
dconv3x3_config = dict(
type='DCNv2',
kernel_size=3,
use_bias=True,
deform_groups=2,
padding=1)
conv3x3_config = dict(type='Conv', kernel_size=3, padding=1)
conv1x1_config = dict(type='Conv', kernel_size=1)
self.arch_config = [
dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config
]
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i, op_ in enumerate(self.arch_config):
op = copy.deepcopy(op_)
chn = self.in_channels if i == 0 else self.feat_channels
assert isinstance(op, dict)
use_bias = op.pop('use_bias', False)
padding = op.pop('padding', 0)
kernel_size = op.pop('kernel_size')
module = ConvModule(
chn,
self.feat_channels,
kernel_size,
stride=1,
padding=padding,
norm_cfg=self.norm_cfg,
bias=use_bias,
conv_cfg=op)
self.cls_convs.append(copy.deepcopy(module))
self.reg_convs.append(copy.deepcopy(module))
self.conv_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
|