Spaces:
Runtime error
Runtime error
File size: 12,736 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init,
kaiming_init)
from mmcv.runner import Sequential, load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from mmdet.utils import get_root_logger
from ..builder import BACKBONES
from .resnet import BasicBlock
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet
class Bottleneck(_Bottleneck):
r"""Bottleneck for the ResNet backbone in `DetectoRS
<https://arxiv.org/pdf/2006.02334.pdf>`_.
This bottleneck allows the users to specify whether to use
SAC (Switchable Atrous Convolution) and RFP (Recursive Feature Pyramid).
Args:
inplanes (int): The number of input channels.
planes (int): The number of output channels before expansion.
rfp_inplanes (int, optional): The number of channels from RFP.
Default: None. If specified, an additional conv layer will be
added for ``rfp_feat``. Otherwise, the structure is the same as
base class.
sac (dict, optional): Dictionary to construct SAC. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
expansion = 4
def __init__(self,
inplanes,
planes,
rfp_inplanes=None,
sac=None,
init_cfg=None,
**kwargs):
super(Bottleneck, self).__init__(
inplanes, planes, init_cfg=init_cfg, **kwargs)
assert sac is None or isinstance(sac, dict)
self.sac = sac
self.with_sac = sac is not None
if self.with_sac:
self.conv2 = build_conv_layer(
self.sac,
planes,
planes,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
bias=False)
self.rfp_inplanes = rfp_inplanes
if self.rfp_inplanes:
self.rfp_conv = build_conv_layer(
None,
self.rfp_inplanes,
planes * self.expansion,
1,
stride=1,
bias=True)
if init_cfg is None:
self.init_cfg = dict(
type='Constant', val=0, override=dict(name='rfp_conv'))
def rfp_forward(self, x, rfp_feat):
"""The forward function that also takes the RFP features as input."""
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv1_plugin_names)
out = self.conv2(out)
out = self.norm2(out)
out = self.relu(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv2_plugin_names)
out = self.conv3(out)
out = self.norm3(out)
if self.with_plugins:
out = self.forward_plugin(out, self.after_conv3_plugin_names)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
if self.rfp_inplanes:
rfp_feat = self.rfp_conv(rfp_feat)
out = out + rfp_feat
out = self.relu(out)
return out
class ResLayer(Sequential):
"""ResLayer to build ResNet style backbone for RPF in detectoRS.
The difference between this module and base class is that we pass
``rfp_inplanes`` to the first block.
Args:
block (nn.Module): block used to build ResLayer.
inplanes (int): inplanes of block.
planes (int): planes of block.
num_blocks (int): number of blocks.
stride (int): stride of the first block. Default: 1
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
downsample_first (bool): Downsample at the first block or last block.
False for Hourglass, True for ResNet. Default: True
rfp_inplanes (int, optional): The number of channels from RFP.
Default: None. If specified, an additional conv layer will be
added for ``rfp_feat``. Otherwise, the structure is the same as
base class.
"""
def __init__(self,
block,
inplanes,
planes,
num_blocks,
stride=1,
avg_down=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
downsample_first=True,
rfp_inplanes=None,
**kwargs):
self.block = block
assert downsample_first, f'downsample_first={downsample_first} is ' \
'not supported in DetectoRS'
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = []
conv_stride = stride
if avg_down and stride != 1:
conv_stride = 1
downsample.append(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False))
downsample.extend([
build_conv_layer(
conv_cfg,
inplanes,
planes * block.expansion,
kernel_size=1,
stride=conv_stride,
bias=False),
build_norm_layer(norm_cfg, planes * block.expansion)[1]
])
downsample = nn.Sequential(*downsample)
layers = []
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
rfp_inplanes=rfp_inplanes,
**kwargs))
inplanes = planes * block.expansion
for _ in range(1, num_blocks):
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
super(ResLayer, self).__init__(*layers)
@BACKBONES.register_module()
class DetectoRS_ResNet(ResNet):
"""ResNet backbone for DetectoRS.
Args:
sac (dict, optional): Dictionary to construct SAC (Switchable Atrous
Convolution). Default: None.
stage_with_sac (list): Which stage to use sac. Default: (False, False,
False, False).
rfp_inplanes (int, optional): The number of channels from RFP.
Default: None. If specified, an additional conv layer will be
added for ``rfp_feat``. Otherwise, the structure is the same as
base class.
output_img (bool): If ``True``, the input image will be inserted into
the starting position of output. Default: False.
"""
arch_settings = {
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3))
}
def __init__(self,
sac=None,
stage_with_sac=(False, False, False, False),
rfp_inplanes=None,
output_img=False,
pretrained=None,
init_cfg=None,
**kwargs):
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be specified at the same time'
self.pretrained = pretrained
if init_cfg is not None:
assert isinstance(init_cfg, dict), \
f'init_cfg must be a dict, but got {type(init_cfg)}'
if 'type' in init_cfg:
assert init_cfg.get('type') == 'Pretrained', \
'Only can initialize module by loading a pretrained model'
else:
raise KeyError('`init_cfg` must contain the key "type"')
self.pretrained = init_cfg.get('checkpoint')
self.sac = sac
self.stage_with_sac = stage_with_sac
self.rfp_inplanes = rfp_inplanes
self.output_img = output_img
super(DetectoRS_ResNet, self).__init__(**kwargs)
self.inplanes = self.stem_channels
self.res_layers = []
for i, num_blocks in enumerate(self.stage_blocks):
stride = self.strides[i]
dilation = self.dilations[i]
dcn = self.dcn if self.stage_with_dcn[i] else None
sac = self.sac if self.stage_with_sac[i] else None
if self.plugins is not None:
stage_plugins = self.make_stage_plugins(self.plugins, i)
else:
stage_plugins = None
planes = self.base_channels * 2**i
res_layer = self.make_res_layer(
block=self.block,
inplanes=self.inplanes,
planes=planes,
num_blocks=num_blocks,
stride=stride,
dilation=dilation,
style=self.style,
avg_down=self.avg_down,
with_cp=self.with_cp,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
dcn=dcn,
sac=sac,
rfp_inplanes=rfp_inplanes if i > 0 else None,
plugins=stage_plugins)
self.inplanes = planes * self.block.expansion
layer_name = f'layer{i + 1}'
self.add_module(layer_name, res_layer)
self.res_layers.append(layer_name)
self._freeze_stages()
# In order to be properly initialized by RFP
def init_weights(self):
# Calling this method will cause parameter initialization exception
# super(DetectoRS_ResNet, self).init_weights()
if isinstance(self.pretrained, str):
logger = get_root_logger()
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
elif self.pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
if self.dcn is not None:
for m in self.modules():
if isinstance(m, Bottleneck) and hasattr(
m.conv2, 'conv_offset'):
constant_init(m.conv2.conv_offset, 0)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
constant_init(m.norm3, 0)
elif isinstance(m, BasicBlock):
constant_init(m.norm2, 0)
else:
raise TypeError('pretrained must be a str or None')
def make_res_layer(self, **kwargs):
"""Pack all blocks in a stage into a ``ResLayer`` for DetectoRS."""
return ResLayer(**kwargs)
def forward(self, x):
"""Forward function."""
outs = list(super(DetectoRS_ResNet, self).forward(x))
if self.output_img:
outs.insert(0, x)
return tuple(outs)
def rfp_forward(self, x, rfp_feats):
"""Forward function for RFP."""
if self.deep_stem:
x = self.stem(x)
else:
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.maxpool(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
rfp_feat = rfp_feats[i] if i > 0 else None
for layer in res_layer:
x = layer.rfp_forward(x, rfp_feat)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
|