File size: 9,166 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp

import mmcv
import numpy as np
from mmcv.fileio import load
from mmcv.utils import print_log
from pycocotools import mask as coco_mask
from terminaltables import AsciiTable

from .builder import DATASETS
from .coco import CocoDataset


@DATASETS.register_module()
class OccludedSeparatedCocoDataset(CocoDataset):
    """COCO dataset with evaluation on separated and occluded masks which
    presented in paper `A Tri-Layer Plugin to Improve Occluded Detection.

    <https://arxiv.org/abs/2210.10046>`_.

    Separated COCO and Occluded COCO are automatically generated subsets of
    COCO val dataset, collecting separated objects and partially occluded
    objects for a large variety of categories. In this way, we define
    occlusion into two major categories: separated and partially occluded.

    - Separation: target object segmentation mask is separated into distinct
      regions by the occluder.
    - Partial Occlusion: target object is partially occluded but the
      segmentation mask is connected.

    These two new scalable real-image datasets are to benchmark a model's
    capability to detect occluded objects of 80 common categories.

    Please cite the paper if you use this dataset:

    @article{zhan2022triocc,
        title={A Tri-Layer Plugin to Improve Occluded Detection},
        author={Zhan, Guanqi and Xie, Weidi and Zisserman, Andrew},
        journal={British Machine Vision Conference},
        year={2022}
    }

    Args:
        occluded_ann (str): Path to the occluded coco annotation file.
        separated_ann (str): Path to the separated coco annotation file.
    """  # noqa

    def __init__(
            self,
            *args,
            occluded_ann='https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/occluded_coco.pkl',  # noqa
            separated_ann='https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/separated_coco.pkl',  # noqa
            **kwargs):
        super().__init__(*args, **kwargs)

        # load from local file
        if osp.isfile(occluded_ann) and not osp.isabs(occluded_ann):
            occluded_ann = osp.join(self.data_root, occluded_ann)
        if osp.isfile(separated_ann) and not osp.isabs(separated_ann):
            separated_ann = osp.join(self.data_root, separated_ann)

        self.occluded_ann = load(occluded_ann)
        self.separated_ann = load(separated_ann)

    def evaluate(self,
                 results,
                 metric=[],
                 score_thr=0.3,
                 iou_thr=0.75,
                 **kwargs):
        """Occluded and separated mask evaluation in COCO protocol.

        Args:
            results (list[tuple]): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated. Options are
                'bbox', 'segm', 'proposal', 'proposal_fast'. Defaults to [].
            score_thr (float): Score threshold of the detection masks.
                Defaults to 0.3.
            iou_thr (float): IoU threshold for the recall calculation.
                Defaults to 0.75.
        Returns:
            dict[str, float]: The recall of occluded and separated masks and
            COCO style evaluation metric.
        """
        coco_metric_res = super().evaluate(results, metric=metric, **kwargs)
        eval_res = self.evaluate_occluded_separated(results, score_thr,
                                                    iou_thr)
        coco_metric_res.update(eval_res)
        return coco_metric_res

    def evaluate_occluded_separated(self,
                                    results,
                                    score_thr=0.3,
                                    iou_thr=0.75):
        """Compute the recall of occluded and separated masks.

        Args:
            results (list[tuple]): Testing results of the dataset.
            score_thr (float): Score threshold of the detection masks.
                Defaults to 0.3.
            iou_thr (float): IoU threshold for the recall calculation.
                Defaults to 0.75.
        Returns:
            dict[str, float]: The recall of occluded and separated masks.
        """
        dict_det = {}
        print_log('processing detection results...')
        prog_bar = mmcv.ProgressBar(len(results))
        for i in range(len(results)):
            cur_img_name = self.data_infos[i]['filename']
            if cur_img_name not in dict_det.keys():
                dict_det[cur_img_name] = []
            for cat_id in range(len(results[i][1])):
                assert len(results[i][1][cat_id]) == len(results[i][0][cat_id])
                for instance_id in range(len(results[i][1][cat_id])):
                    cur_binary_mask = coco_mask.decode(
                        results[i][1][cat_id][instance_id])
                    cur_det_bbox = results[i][0][cat_id][instance_id][:4]
                    dict_det[cur_img_name].append([
                        results[i][0][cat_id][instance_id][4],
                        self.CLASSES[cat_id], cur_binary_mask, cur_det_bbox
                    ])
            dict_det[cur_img_name].sort(
                key=lambda x: (-x[0], x[3][0], x[3][1])
            )  # rank by confidence from high to low, avoid same confidence
            prog_bar.update()
        print_log('\ncomputing occluded mask recall...')
        occluded_correct_num, occluded_recall = self.compute_recall(
            dict_det,
            gt_ann=self.occluded_ann,
            score_thr=score_thr,
            iou_thr=iou_thr,
            is_occ=True)
        print_log(f'\nCOCO occluded mask recall: {occluded_recall:.2f}%')
        print_log(f'COCO occluded mask success num: {occluded_correct_num}')
        print_log('computing separated mask recall...')
        separated_correct_num, separated_recall = self.compute_recall(
            dict_det,
            gt_ann=self.separated_ann,
            score_thr=score_thr,
            iou_thr=iou_thr,
            is_occ=False)
        print_log(f'\nCOCO separated mask recall: {separated_recall:.2f}%')
        print_log(f'COCO separated mask success num: {separated_correct_num}')
        table_data = [
            ['mask type', 'recall', 'num correct'],
            ['occluded', f'{occluded_recall:.2f}%', occluded_correct_num],
            ['separated', f'{separated_recall:.2f}%', separated_correct_num]
        ]
        table = AsciiTable(table_data)
        print_log('\n' + table.table)
        return dict(
            occluded_recall=occluded_recall, separated_recall=separated_recall)

    def compute_recall(self,
                       result_dict,
                       gt_ann,
                       score_thr=0.3,
                       iou_thr=0.75,
                       is_occ=True):
        """Compute the recall of occluded or separated masks.

        Args:
            results (list[tuple]): Testing results of the dataset.
            gt_ann (list): Occluded or separated coco annotations.
            score_thr (float): Score threshold of the detection masks.
                Defaults to 0.3.
            iou_thr (float): IoU threshold for the recall calculation.
                Defaults to 0.75.
            is_occ (bool): Whether the annotation is occluded mask.
                Defaults to True.
        Returns:
            tuple: number of correct masks and the recall.
        """
        correct = 0
        prog_bar = mmcv.ProgressBar(len(gt_ann))
        for iter_i in range(len(gt_ann)):
            cur_item = gt_ann[iter_i]
            cur_img_name = cur_item[0]
            cur_gt_bbox = cur_item[3]
            if is_occ:
                cur_gt_bbox = [
                    cur_gt_bbox[0], cur_gt_bbox[1],
                    cur_gt_bbox[0] + cur_gt_bbox[2],
                    cur_gt_bbox[1] + cur_gt_bbox[3]
                ]
            cur_gt_class = cur_item[1]
            cur_gt_mask = coco_mask.decode(cur_item[4])

            assert cur_img_name in result_dict.keys()
            cur_detections = result_dict[cur_img_name]

            correct_flag = False
            for i in range(len(cur_detections)):
                cur_det_confidence = cur_detections[i][0]
                if cur_det_confidence < score_thr:
                    break
                cur_det_class = cur_detections[i][1]
                if cur_det_class != cur_gt_class:
                    continue
                cur_det_mask = cur_detections[i][2]
                cur_iou = self.mask_iou(cur_det_mask, cur_gt_mask)
                if cur_iou >= iou_thr:
                    correct_flag = True
                    break
            if correct_flag:
                correct += 1
            prog_bar.update()
        recall = correct / len(gt_ann) * 100
        return correct, recall

    def mask_iou(self, mask1, mask2):
        """Compute IoU between two masks."""
        mask1_area = np.count_nonzero(mask1 == 1)
        mask2_area = np.count_nonzero(mask2 == 1)
        intersection = np.count_nonzero(np.logical_and(mask1 == 1, mask2 == 1))
        iou = intersection / (mask1_area + mask2_area - intersection)
        return iou