Spaces:
Runtime error
Runtime error
File size: 17,774 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# Copyright (c) OpenMMLab. All rights reserved.
import bisect
import collections
import copy
import math
from collections import defaultdict
import numpy as np
from mmcv.utils import build_from_cfg, print_log
from torch.utils.data.dataset import ConcatDataset as _ConcatDataset
from .builder import DATASETS, PIPELINES
from .coco import CocoDataset
@DATASETS.register_module()
class ConcatDataset(_ConcatDataset):
"""A wrapper of concatenated dataset.
Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but
concat the group flag for image aspect ratio.
Args:
datasets (list[:obj:`Dataset`]): A list of datasets.
separate_eval (bool): Whether to evaluate the results
separately if it is used as validation dataset.
Defaults to True.
"""
def __init__(self, datasets, separate_eval=True):
super(ConcatDataset, self).__init__(datasets)
self.CLASSES = datasets[0].CLASSES
self.PALETTE = getattr(datasets[0], 'PALETTE', None)
self.separate_eval = separate_eval
if not separate_eval:
if any([isinstance(ds, CocoDataset) for ds in datasets]):
raise NotImplementedError(
'Evaluating concatenated CocoDataset as a whole is not'
' supported! Please set "separate_eval=True"')
elif len(set([type(ds) for ds in datasets])) != 1:
raise NotImplementedError(
'All the datasets should have same types')
if hasattr(datasets[0], 'flag'):
flags = []
for i in range(0, len(datasets)):
flags.append(datasets[i].flag)
self.flag = np.concatenate(flags)
def get_cat_ids(self, idx):
"""Get category ids of concatenated dataset by index.
Args:
idx (int): Index of data.
Returns:
list[int]: All categories in the image of specified index.
"""
if idx < 0:
if -idx > len(self):
raise ValueError(
'absolute value of index should not exceed dataset length')
idx = len(self) + idx
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx].get_cat_ids(sample_idx)
def get_ann_info(self, idx):
"""Get annotation of concatenated dataset by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
if idx < 0:
if -idx > len(self):
raise ValueError(
'absolute value of index should not exceed dataset length')
idx = len(self) + idx
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx].get_ann_info(sample_idx)
def evaluate(self, results, logger=None, **kwargs):
"""Evaluate the results.
Args:
results (list[list | tuple]): Testing results of the dataset.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict[str: float]: AP results of the total dataset or each separate
dataset if `self.separate_eval=True`.
"""
assert len(results) == self.cumulative_sizes[-1], \
('Dataset and results have different sizes: '
f'{self.cumulative_sizes[-1]} v.s. {len(results)}')
# Check whether all the datasets support evaluation
for dataset in self.datasets:
assert hasattr(dataset, 'evaluate'), \
f'{type(dataset)} does not implement evaluate function'
if self.separate_eval:
dataset_idx = -1
total_eval_results = dict()
for size, dataset in zip(self.cumulative_sizes, self.datasets):
start_idx = 0 if dataset_idx == -1 else \
self.cumulative_sizes[dataset_idx]
end_idx = self.cumulative_sizes[dataset_idx + 1]
results_per_dataset = results[start_idx:end_idx]
print_log(
f'\nEvaluating {dataset.ann_file} with '
f'{len(results_per_dataset)} images now',
logger=logger)
eval_results_per_dataset = dataset.evaluate(
results_per_dataset, logger=logger, **kwargs)
dataset_idx += 1
for k, v in eval_results_per_dataset.items():
total_eval_results.update({f'{dataset_idx}_{k}': v})
return total_eval_results
elif any([isinstance(ds, CocoDataset) for ds in self.datasets]):
raise NotImplementedError(
'Evaluating concatenated CocoDataset as a whole is not'
' supported! Please set "separate_eval=True"')
elif len(set([type(ds) for ds in self.datasets])) != 1:
raise NotImplementedError(
'All the datasets should have same types')
else:
original_data_infos = self.datasets[0].data_infos
self.datasets[0].data_infos = sum(
[dataset.data_infos for dataset in self.datasets], [])
eval_results = self.datasets[0].evaluate(
results, logger=logger, **kwargs)
self.datasets[0].data_infos = original_data_infos
return eval_results
@DATASETS.register_module()
class RepeatDataset:
"""A wrapper of repeated dataset.
The length of repeated dataset will be `times` larger than the original
dataset. This is useful when the data loading time is long but the dataset
is small. Using RepeatDataset can reduce the data loading time between
epochs.
Args:
dataset (:obj:`Dataset`): The dataset to be repeated.
times (int): Repeat times.
"""
def __init__(self, dataset, times):
self.dataset = dataset
self.times = times
self.CLASSES = dataset.CLASSES
self.PALETTE = getattr(dataset, 'PALETTE', None)
if hasattr(self.dataset, 'flag'):
self.flag = np.tile(self.dataset.flag, times)
self._ori_len = len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx % self._ori_len]
def get_cat_ids(self, idx):
"""Get category ids of repeat dataset by index.
Args:
idx (int): Index of data.
Returns:
list[int]: All categories in the image of specified index.
"""
return self.dataset.get_cat_ids(idx % self._ori_len)
def get_ann_info(self, idx):
"""Get annotation of repeat dataset by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
return self.dataset.get_ann_info(idx % self._ori_len)
def __len__(self):
"""Length after repetition."""
return self.times * self._ori_len
# Modified from https://github.com/facebookresearch/detectron2/blob/41d475b75a230221e21d9cac5d69655e3415e3a4/detectron2/data/samplers/distributed_sampler.py#L57 # noqa
@DATASETS.register_module()
class ClassBalancedDataset:
"""A wrapper of repeated dataset with repeat factor.
Suitable for training on class imbalanced datasets like LVIS. Following
the sampling strategy in the `paper <https://arxiv.org/abs/1908.03195>`_,
in each epoch, an image may appear multiple times based on its
"repeat factor".
The repeat factor for an image is a function of the frequency the rarest
category labeled in that image. The "frequency of category c" in [0, 1]
is defined by the fraction of images in the training set (without repeats)
in which category c appears.
The dataset needs to instantiate :func:`self.get_cat_ids` to support
ClassBalancedDataset.
The repeat factor is computed as followed.
1. For each category c, compute the fraction # of images
that contain it: :math:`f(c)`
2. For each category c, compute the category-level repeat factor:
:math:`r(c) = max(1, sqrt(t/f(c)))`
3. For each image I, compute the image-level repeat factor:
:math:`r(I) = max_{c in I} r(c)`
Args:
dataset (:obj:`CustomDataset`): The dataset to be repeated.
oversample_thr (float): frequency threshold below which data is
repeated. For categories with ``f_c >= oversample_thr``, there is
no oversampling. For categories with ``f_c < oversample_thr``, the
degree of oversampling following the square-root inverse frequency
heuristic above.
filter_empty_gt (bool, optional): If set true, images without bounding
boxes will not be oversampled. Otherwise, they will be categorized
as the pure background class and involved into the oversampling.
Default: True.
"""
def __init__(self, dataset, oversample_thr, filter_empty_gt=True):
self.dataset = dataset
self.oversample_thr = oversample_thr
self.filter_empty_gt = filter_empty_gt
self.CLASSES = dataset.CLASSES
self.PALETTE = getattr(dataset, 'PALETTE', None)
repeat_factors = self._get_repeat_factors(dataset, oversample_thr)
repeat_indices = []
for dataset_idx, repeat_factor in enumerate(repeat_factors):
repeat_indices.extend([dataset_idx] * math.ceil(repeat_factor))
self.repeat_indices = repeat_indices
flags = []
if hasattr(self.dataset, 'flag'):
for flag, repeat_factor in zip(self.dataset.flag, repeat_factors):
flags.extend([flag] * int(math.ceil(repeat_factor)))
assert len(flags) == len(repeat_indices)
self.flag = np.asarray(flags, dtype=np.uint8)
def _get_repeat_factors(self, dataset, repeat_thr):
"""Get repeat factor for each images in the dataset.
Args:
dataset (:obj:`CustomDataset`): The dataset
repeat_thr (float): The threshold of frequency. If an image
contains the categories whose frequency below the threshold,
it would be repeated.
Returns:
list[float]: The repeat factors for each images in the dataset.
"""
# 1. For each category c, compute the fraction # of images
# that contain it: f(c)
category_freq = defaultdict(int)
num_images = len(dataset)
for idx in range(num_images):
cat_ids = set(self.dataset.get_cat_ids(idx))
if len(cat_ids) == 0 and not self.filter_empty_gt:
cat_ids = set([len(self.CLASSES)])
for cat_id in cat_ids:
category_freq[cat_id] += 1
for k, v in category_freq.items():
category_freq[k] = v / num_images
# 2. For each category c, compute the category-level repeat factor:
# r(c) = max(1, sqrt(t/f(c)))
category_repeat = {
cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq))
for cat_id, cat_freq in category_freq.items()
}
# 3. For each image I, compute the image-level repeat factor:
# r(I) = max_{c in I} r(c)
repeat_factors = []
for idx in range(num_images):
cat_ids = set(self.dataset.get_cat_ids(idx))
if len(cat_ids) == 0 and not self.filter_empty_gt:
cat_ids = set([len(self.CLASSES)])
repeat_factor = 1
if len(cat_ids) > 0:
repeat_factor = max(
{category_repeat[cat_id]
for cat_id in cat_ids})
repeat_factors.append(repeat_factor)
return repeat_factors
def __getitem__(self, idx):
ori_index = self.repeat_indices[idx]
return self.dataset[ori_index]
def get_ann_info(self, idx):
"""Get annotation of dataset by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
ori_index = self.repeat_indices[idx]
return self.dataset.get_ann_info(ori_index)
def __len__(self):
"""Length after repetition."""
return len(self.repeat_indices)
@DATASETS.register_module()
class MultiImageMixDataset:
"""A wrapper of multiple images mixed dataset.
Suitable for training on multiple images mixed data augmentation like
mosaic and mixup. For the augmentation pipeline of mixed image data,
the `get_indexes` method needs to be provided to obtain the image
indexes, and you can set `skip_flags` to change the pipeline running
process. At the same time, we provide the `dynamic_scale` parameter
to dynamically change the output image size.
Args:
dataset (:obj:`CustomDataset`): The dataset to be mixed.
pipeline (Sequence[dict]): Sequence of transform object or
config dict to be composed.
dynamic_scale (tuple[int], optional): The image scale can be changed
dynamically. Default to None. It is deprecated.
skip_type_keys (list[str], optional): Sequence of type string to
be skip pipeline. Default to None.
max_refetch (int): The maximum number of retry iterations for getting
valid results from the pipeline. If the number of iterations is
greater than `max_refetch`, but results is still None, then the
iteration is terminated and raise the error. Default: 15.
"""
def __init__(self,
dataset,
pipeline,
dynamic_scale=None,
skip_type_keys=None,
max_refetch=15):
if dynamic_scale is not None:
raise RuntimeError(
'dynamic_scale is deprecated. Please use Resize pipeline '
'to achieve similar functions')
assert isinstance(pipeline, collections.abc.Sequence)
if skip_type_keys is not None:
assert all([
isinstance(skip_type_key, str)
for skip_type_key in skip_type_keys
])
self._skip_type_keys = skip_type_keys
self.pipeline = []
self.pipeline_types = []
for transform in pipeline:
if isinstance(transform, dict):
self.pipeline_types.append(transform['type'])
transform = build_from_cfg(transform, PIPELINES)
self.pipeline.append(transform)
else:
raise TypeError('pipeline must be a dict')
self.dataset = dataset
self.CLASSES = dataset.CLASSES
self.PALETTE = getattr(dataset, 'PALETTE', None)
if hasattr(self.dataset, 'flag'):
self.flag = dataset.flag
self.num_samples = len(dataset)
self.max_refetch = max_refetch
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
results = copy.deepcopy(self.dataset[idx])
for (transform, transform_type) in zip(self.pipeline,
self.pipeline_types):
if self._skip_type_keys is not None and \
transform_type in self._skip_type_keys:
continue
if hasattr(transform, 'get_indexes'):
for i in range(self.max_refetch):
# Make sure the results passed the loading pipeline
# of the original dataset is not None.
indexes = transform.get_indexes(self.dataset)
if not isinstance(indexes, collections.abc.Sequence):
indexes = [indexes]
mix_results = [
copy.deepcopy(self.dataset[index]) for index in indexes
]
if None not in mix_results:
results['mix_results'] = mix_results
break
else:
raise RuntimeError(
'The loading pipeline of the original dataset'
' always return None. Please check the correctness '
'of the dataset and its pipeline.')
for i in range(self.max_refetch):
# To confirm the results passed the training pipeline
# of the wrapper is not None.
updated_results = transform(copy.deepcopy(results))
if updated_results is not None:
results = updated_results
break
else:
raise RuntimeError(
'The training pipeline of the dataset wrapper'
' always return None.Please check the correctness '
'of the dataset and its pipeline.')
if 'mix_results' in results:
results.pop('mix_results')
return results
def update_skip_type_keys(self, skip_type_keys):
"""Update skip_type_keys. It is called by an external hook.
Args:
skip_type_keys (list[str], optional): Sequence of type
string to be skip pipeline.
"""
assert all([
isinstance(skip_type_key, str) for skip_type_key in skip_type_keys
])
self._skip_type_keys = skip_type_keys
|