File size: 8,727 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from pathlib import Path

import mmcv
import numpy as np
import torch
from mmcv.ops import RoIPool
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint

from mmdet.core import get_classes
from mmdet.datasets import replace_ImageToTensor
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector


def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None):
    """Initialize a detector from config file.

    Args:
        config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path,
            :obj:`Path`, or the config object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        cfg_options (dict): Options to override some settings in the used
            config.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, (str, Path)):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    if cfg_options is not None:
        config.merge_from_dict(cfg_options)
    if 'pretrained' in config.model:
        config.model.pretrained = None
    elif (config.model.get('backbone', None) is not None
          and 'init_cfg' in config.model.backbone):
        config.model.backbone.init_cfg = None
    config.model.train_cfg = None
    model = build_detector(config.model, test_cfg=config.get('test_cfg'))
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
        if 'CLASSES' in checkpoint.get('meta', {}):
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.simplefilter('once')
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()

    if device == 'npu':
        from mmcv.device.npu import NPUDataParallel
        model = NPUDataParallel(model)
        model.cfg = config

    return model


class LoadImage:
    """Deprecated.

    A simple pipeline to load image.
    """

    def __call__(self, results):
        """Call function to load images into results.

        Args:
            results (dict): A result dict contains the file name
                of the image to be read.
        Returns:
            dict: ``results`` will be returned containing loaded image.
        """
        warnings.simplefilter('once')
        warnings.warn('`LoadImage` is deprecated and will be removed in '
                      'future releases. You may use `LoadImageFromWebcam` '
                      'from `mmdet.datasets.pipelines.` instead.')
        if isinstance(results['img'], str):
            results['filename'] = results['img']
            results['ori_filename'] = results['img']
        else:
            results['filename'] = None
            results['ori_filename'] = None
        img = mmcv.imread(results['img'])
        results['img'] = img
        results['img_fields'] = ['img']
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        return results


def inference_detector(model, imgs):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
           Either image files or loaded images.

    Returns:
        If imgs is a list or tuple, the same length list type results
        will be returned, otherwise return the detection results directly.
    """
    ori_img = imgs
    if isinstance(imgs, (list, tuple)):
        is_batch = True
    else:
        imgs = [imgs]
        is_batch = False

    cfg = model.cfg
    device = next(model.parameters()).device  # model device

    if isinstance(imgs[0], np.ndarray):
        cfg = cfg.copy()
        # set loading pipeline type
        cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'

    cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
    test_pipeline = Compose(cfg.data.test.pipeline)

    datas = []
    for img in imgs:
        # prepare data
        if isinstance(img, np.ndarray):
            # directly add img
            data = dict(img=img)
        else:
            # add information into dict
            data = dict(img_info=dict(filename=img), img_prefix=None)
        # build the data pipeline
        data = test_pipeline(data)
        datas.append(data)

    data = collate(datas, samples_per_gpu=len(imgs))
    # just get the actual data from DataContainer
    data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
    data['img'] = [img.data[0] for img in data['img']]
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device])[0]
    else:
        for m in model.modules():
            assert not isinstance(
                m, RoIPool
            ), 'CPU inference with RoIPool is not supported currently.'

    # forward the model
    with torch.no_grad():
        results = model(return_loss=False, rescale=True, **data, ori_img=ori_img)

    if not is_batch:
        return results[0]
    else:
        return results


async def async_inference_detector(model, imgs):
    """Async inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        img (str | ndarray): Either image files or loaded images.

    Returns:
        Awaitable detection results.
    """
    if not isinstance(imgs, (list, tuple)):
        imgs = [imgs]

    cfg = model.cfg
    device = next(model.parameters()).device  # model device

    if isinstance(imgs[0], np.ndarray):
        cfg = cfg.copy()
        # set loading pipeline type
        cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'

    cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
    test_pipeline = Compose(cfg.data.test.pipeline)

    datas = []
    for img in imgs:
        # prepare data
        if isinstance(img, np.ndarray):
            # directly add img
            data = dict(img=img)
        else:
            # add information into dict
            data = dict(img_info=dict(filename=img), img_prefix=None)
        # build the data pipeline
        data = test_pipeline(data)
        datas.append(data)

    data = collate(datas, samples_per_gpu=len(imgs))
    # just get the actual data from DataContainer
    data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
    data['img'] = [img.data[0] for img in data['img']]
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device])[0]
    else:
        for m in model.modules():
            assert not isinstance(
                m, RoIPool
            ), 'CPU inference with RoIPool is not supported currently.'

    # We don't restore `torch.is_grad_enabled()` value during concurrent
    # inference since execution can overlap
    torch.set_grad_enabled(False)
    results = await model.aforward_test(rescale=True, **data)
    return results


def show_result_pyplot(model,
                       img,
                       result,
                       score_thr=0.3,
                       title='result',
                       wait_time=0,
                       palette=None,
                       out_file=None):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        title (str): Title of the pyplot figure.
        wait_time (float): Value of waitKey param. Default: 0.
        palette (str or tuple(int) or :obj:`Color`): Color.
            The tuple of color should be in BGR order.
        out_file (str or None): The path to write the image.
            Default: None.
    """
    if hasattr(model, 'module'):
        model = model.module
    model.show_result(
        img,
        result,
        score_thr=score_thr,
        show=True,
        wait_time=wait_time,
        win_name=title,
        bbox_color=palette,
        text_color=(200, 200, 200),
        mask_color=palette,
        out_file=out_file)