Spaces:
Runtime error
Runtime error
File size: 9,716 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import PLUGIN_LAYERS, Conv2d, ConvModule, caffe2_xavier_init
from mmcv.cnn.bricks.transformer import (build_positional_encoding,
build_transformer_layer_sequence)
from mmcv.runner import BaseModule, ModuleList
@PLUGIN_LAYERS.register_module()
class PixelDecoder(BaseModule):
"""Pixel decoder with a structure like fpn.
Args:
in_channels (list[int] | tuple[int]): Number of channels in the
input feature maps.
feat_channels (int): Number channels for feature.
out_channels (int): Number channels for output.
norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization.
Defaults to dict(type='GN', num_groups=32).
act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation.
Defaults to dict(type='ReLU').
encoder (:obj:`mmcv.ConfigDict` | dict): Config for transorformer
encoder.Defaults to None.
positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for
transformer encoder position encoding. Defaults to
dict(type='SinePositionalEncoding', num_feats=128,
normalize=True).
init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
feat_channels,
out_channels,
norm_cfg=dict(type='GN', num_groups=32),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.num_inputs = len(in_channels)
self.lateral_convs = ModuleList()
self.output_convs = ModuleList()
self.use_bias = norm_cfg is None
for i in range(0, self.num_inputs - 1):
lateral_conv = ConvModule(
in_channels[i],
feat_channels,
kernel_size=1,
bias=self.use_bias,
norm_cfg=norm_cfg,
act_cfg=None)
output_conv = ConvModule(
feat_channels,
feat_channels,
kernel_size=3,
stride=1,
padding=1,
bias=self.use_bias,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.lateral_convs.append(lateral_conv)
self.output_convs.append(output_conv)
self.last_feat_conv = ConvModule(
in_channels[-1],
feat_channels,
kernel_size=3,
padding=1,
stride=1,
bias=self.use_bias,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.mask_feature = Conv2d(
feat_channels, out_channels, kernel_size=3, stride=1, padding=1)
def init_weights(self):
"""Initialize weights."""
for i in range(0, self.num_inputs - 2):
caffe2_xavier_init(self.lateral_convs[i].conv, bias=0)
caffe2_xavier_init(self.output_convs[i].conv, bias=0)
caffe2_xavier_init(self.mask_feature, bias=0)
caffe2_xavier_init(self.last_feat_conv, bias=0)
def forward(self, feats, img_metas):
"""
Args:
feats (list[Tensor]): Feature maps of each level. Each has
shape of (batch_size, c, h, w).
img_metas (list[dict]): List of image information. Pass in
for creating more accurate padding mask. Not used here.
Returns:
tuple: a tuple containing the following:
- mask_feature (Tensor): Shape (batch_size, c, h, w).
- memory (Tensor): Output of last stage of backbone.\
Shape (batch_size, c, h, w).
"""
y = self.last_feat_conv(feats[-1])
for i in range(self.num_inputs - 2, -1, -1):
x = feats[i]
cur_feat = self.lateral_convs[i](x)
y = cur_feat + \
F.interpolate(y, size=cur_feat.shape[-2:], mode='nearest')
y = self.output_convs[i](y)
mask_feature = self.mask_feature(y)
memory = feats[-1]
return mask_feature, memory
@PLUGIN_LAYERS.register_module()
class TransformerEncoderPixelDecoder(PixelDecoder):
"""Pixel decoder with transormer encoder inside.
Args:
in_channels (list[int] | tuple[int]): Number of channels in the
input feature maps.
feat_channels (int): Number channels for feature.
out_channels (int): Number channels for output.
norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization.
Defaults to dict(type='GN', num_groups=32).
act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation.
Defaults to dict(type='ReLU').
encoder (:obj:`mmcv.ConfigDict` | dict): Config for transorformer
encoder.Defaults to None.
positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for
transformer encoder position encoding. Defaults to
dict(type='SinePositionalEncoding', num_feats=128,
normalize=True).
init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
feat_channels,
out_channels,
norm_cfg=dict(type='GN', num_groups=32),
act_cfg=dict(type='ReLU'),
encoder=None,
positional_encoding=dict(
type='SinePositionalEncoding',
num_feats=128,
normalize=True),
init_cfg=None):
super(TransformerEncoderPixelDecoder, self).__init__(
in_channels,
feat_channels,
out_channels,
norm_cfg,
act_cfg,
init_cfg=init_cfg)
self.last_feat_conv = None
self.encoder = build_transformer_layer_sequence(encoder)
self.encoder_embed_dims = self.encoder.embed_dims
assert self.encoder_embed_dims == feat_channels, 'embed_dims({}) of ' \
'tranformer encoder must equal to feat_channels({})'.format(
feat_channels, self.encoder_embed_dims)
self.positional_encoding = build_positional_encoding(
positional_encoding)
self.encoder_in_proj = Conv2d(
in_channels[-1], feat_channels, kernel_size=1)
self.encoder_out_proj = ConvModule(
feat_channels,
feat_channels,
kernel_size=3,
stride=1,
padding=1,
bias=self.use_bias,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def init_weights(self):
"""Initialize weights."""
for i in range(0, self.num_inputs - 2):
caffe2_xavier_init(self.lateral_convs[i].conv, bias=0)
caffe2_xavier_init(self.output_convs[i].conv, bias=0)
caffe2_xavier_init(self.mask_feature, bias=0)
caffe2_xavier_init(self.encoder_in_proj, bias=0)
caffe2_xavier_init(self.encoder_out_proj.conv, bias=0)
for p in self.encoder.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, feats, img_metas):
"""
Args:
feats (list[Tensor]): Feature maps of each level. Each has
shape of (batch_size, c, h, w).
img_metas (list[dict]): List of image information. Pass in
for creating more accurate padding mask.
Returns:
tuple: a tuple containing the following:
- mask_feature (Tensor): shape (batch_size, c, h, w).
- memory (Tensor): shape (batch_size, c, h, w).
"""
feat_last = feats[-1]
bs, c, h, w = feat_last.shape
input_img_h, input_img_w = img_metas[0]['batch_input_shape']
padding_mask = feat_last.new_ones((bs, input_img_h, input_img_w),
dtype=torch.float32)
for i in range(bs):
img_h, img_w, _ = img_metas[i]['img_shape']
padding_mask[i, :img_h, :img_w] = 0
padding_mask = F.interpolate(
padding_mask.unsqueeze(1),
size=feat_last.shape[-2:],
mode='nearest').to(torch.bool).squeeze(1)
pos_embed = self.positional_encoding(padding_mask)
feat_last = self.encoder_in_proj(feat_last)
# (batch_size, c, h, w) -> (num_queries, batch_size, c)
feat_last = feat_last.flatten(2).permute(2, 0, 1)
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
# (batch_size, h, w) -> (batch_size, h*w)
padding_mask = padding_mask.flatten(1)
memory = self.encoder(
query=feat_last,
key=None,
value=None,
query_pos=pos_embed,
query_key_padding_mask=padding_mask)
# (num_queries, batch_size, c) -> (batch_size, c, h, w)
memory = memory.permute(1, 2, 0).view(bs, self.encoder_embed_dims, h,
w)
y = self.encoder_out_proj(memory)
for i in range(self.num_inputs - 2, -1, -1):
x = feats[i]
cur_feat = self.lateral_convs[i](x)
y = cur_feat + \
F.interpolate(y, size=cur_feat.shape[-2:], mode='nearest')
y = self.output_convs[i](y)
mask_feature = self.mask_feature(y)
return mask_feature, memory
|