File size: 23,840 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer, build_plugin_layer
from mmcv.runner import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm

from ..builder import BACKBONES
from ..utils import ResLayer


class BasicBlock(BaseModule):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None,
                 init_cfg=None):
        super(BasicBlock, self).__init__(init_cfg)
        assert dcn is None, 'Not implemented yet.'
        assert plugins is None, 'Not implemented yet.'

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg, planes, planes, 3, padding=1, bias=False)
        self.add_module(self.norm2_name, norm2)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp

    @property
    def norm1(self):
        """nn.Module: normalization layer after the first convolution layer"""
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        """nn.Module: normalization layer after the second convolution layer"""
        return getattr(self, self.norm2_name)

    def forward(self, x):
        """Forward function."""

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.norm2(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


class Bottleneck(BaseModule):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None,
                 init_cfg=None):
        """Bottleneck block for ResNet.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__(init_cfg)
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        assert plugins is None or isinstance(plugins, list)
        if plugins is not None:
            allowed_position = ['after_conv1', 'after_conv2', 'after_conv3']
            assert all(p['position'] in allowed_position for p in plugins)

        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None
        self.plugins = plugins
        self.with_plugins = plugins is not None

        if self.with_plugins:
            # collect plugins for conv1/conv2/conv3
            self.after_conv1_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv1'
            ]
            self.after_conv2_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv2'
            ]
            self.after_conv3_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv3'
            ]

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(
                conv_cfg,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            self.conv2 = build_conv_layer(
                dcn,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            planes,
            planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

        if self.with_plugins:
            self.after_conv1_plugin_names = self.make_block_plugins(
                planes, self.after_conv1_plugins)
            self.after_conv2_plugin_names = self.make_block_plugins(
                planes, self.after_conv2_plugins)
            self.after_conv3_plugin_names = self.make_block_plugins(
                planes * self.expansion, self.after_conv3_plugins)

    def make_block_plugins(self, in_channels, plugins):
        """make plugins for block.

        Args:
            in_channels (int): Input channels of plugin.
            plugins (list[dict]): List of plugins cfg to build.

        Returns:
            list[str]: List of the names of plugin.
        """
        assert isinstance(plugins, list)
        plugin_names = []
        for plugin in plugins:
            plugin = plugin.copy()
            name, layer = build_plugin_layer(
                plugin,
                in_channels=in_channels,
                postfix=plugin.pop('postfix', ''))
            assert not hasattr(self, name), f'duplicate plugin {name}'
            self.add_module(name, layer)
            plugin_names.append(name)
        return plugin_names

    def forward_plugin(self, x, plugin_names):
        out = x
        for name in plugin_names:
            out = getattr(self, name)(out)
        return out

    @property
    def norm1(self):
        """nn.Module: normalization layer after the first convolution layer"""
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        """nn.Module: normalization layer after the second convolution layer"""
        return getattr(self, self.norm2_name)

    @property
    def norm3(self):
        """nn.Module: normalization layer after the third convolution layer"""
        return getattr(self, self.norm3_name)

    def forward(self, x):
        """Forward function."""

        def _inner_forward(x):
            identity = x
            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv1_plugin_names)

            out = self.conv2(out)
            out = self.norm2(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv2_plugin_names)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv3_plugin_names)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


@BACKBONES.register_module()
class ResNet(BaseModule):
    """ResNet backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        stem_channels (int | None): Number of stem channels. If not specified,
            it will be the same as `base_channels`. Default: None.
        base_channels (int): Number of base channels of res layer. Default: 64.
        in_channels (int): Number of input image channels. Default: 3.
        num_stages (int): Resnet stages. Default: 4.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters.
        norm_cfg (dict): Dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
        plugins (list[dict]): List of plugins for stages, each dict contains:

            - cfg (dict, required): Cfg dict to build plugin.
            - position (str, required): Position inside block to insert
              plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        zero_init_residual (bool): Whether to use zero init for last norm layer
            in resblocks to let them behave as identity.
        pretrained (str, optional): model pretrained path. Default: None
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None

    Example:
        >>> from mmdet.models import ResNet
        >>> import torch
        >>> self = ResNet(depth=18)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 32, 32)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 64, 8, 8)
        (1, 128, 4, 4)
        (1, 256, 2, 2)
        (1, 512, 1, 1)
    """

    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self,
                 depth,
                 in_channels=3,
                 stem_channels=None,
                 base_channels=64,
                 num_stages=4,
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3),
                 style='pytorch',
                 deep_stem=False,
                 avg_down=False,
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 norm_eval=True,
                 dcn=None,
                 stage_with_dcn=(False, False, False, False),
                 plugins=None,
                 with_cp=False,
                 zero_init_residual=True,
                 pretrained=None,
                 init_cfg=None):
        super(ResNet, self).__init__(init_cfg)
        self.zero_init_residual = zero_init_residual
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')

        block_init_cfg = None
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(
                        type='Constant',
                        val=1,
                        layer=['_BatchNorm', 'GroupNorm'])
                ]
                block = self.arch_settings[depth][0]
                if self.zero_init_residual:
                    if block is BasicBlock:
                        block_init_cfg = dict(
                            type='Constant',
                            val=0,
                            override=dict(name='norm2'))
                    elif block is Bottleneck:
                        block_init_cfg = dict(
                            type='Constant',
                            val=0,
                            override=dict(name='norm3'))
        else:
            raise TypeError('pretrained must be a str or None')

        self.depth = depth
        if stem_channels is None:
            stem_channels = base_channels
        self.stem_channels = stem_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert num_stages >= 1 and num_stages <= 4
        self.strides = strides
        self.dilations = dilations
        assert len(strides) == len(dilations) == num_stages
        self.out_indices = out_indices
        assert max(out_indices) < num_stages
        self.style = style
        self.deep_stem = deep_stem
        self.avg_down = avg_down
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.with_cp = with_cp
        self.norm_eval = norm_eval
        self.dcn = dcn
        self.stage_with_dcn = stage_with_dcn
        if dcn is not None:
            assert len(stage_with_dcn) == num_stages
        self.plugins = plugins
        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        self.inplanes = stem_channels

        self._make_stem_layer(in_channels, stem_channels)

        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            stride = strides[i]
            dilation = dilations[i]
            dcn = self.dcn if self.stage_with_dcn[i] else None
            if plugins is not None:
                stage_plugins = self.make_stage_plugins(plugins, i)
            else:
                stage_plugins = None
            planes = base_channels * 2**i
            res_layer = self.make_res_layer(
                block=self.block,
                inplanes=self.inplanes,
                planes=planes,
                num_blocks=num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
                avg_down=self.avg_down,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                dcn=dcn,
                plugins=stage_plugins,
                init_cfg=block_init_cfg)
            self.inplanes = planes * self.block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self._freeze_stages()

        self.feat_dim = self.block.expansion * base_channels * 2**(
            len(self.stage_blocks) - 1)

    def make_stage_plugins(self, plugins, stage_idx):
        """Make plugins for ResNet ``stage_idx`` th stage.

        Currently we support to insert ``context_block``,
        ``empirical_attention_block``, ``nonlocal_block`` into the backbone
        like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of
        Bottleneck.

        An example of plugins format could be:

        Examples:
            >>> plugins=[
            ...     dict(cfg=dict(type='xxx', arg1='xxx'),
            ...          stages=(False, True, True, True),
            ...          position='after_conv2'),
            ...     dict(cfg=dict(type='yyy'),
            ...          stages=(True, True, True, True),
            ...          position='after_conv3'),
            ...     dict(cfg=dict(type='zzz', postfix='1'),
            ...          stages=(True, True, True, True),
            ...          position='after_conv3'),
            ...     dict(cfg=dict(type='zzz', postfix='2'),
            ...          stages=(True, True, True, True),
            ...          position='after_conv3')
            ... ]
            >>> self = ResNet(depth=18)
            >>> stage_plugins = self.make_stage_plugins(plugins, 0)
            >>> assert len(stage_plugins) == 3

        Suppose ``stage_idx=0``, the structure of blocks in the stage would be:

        .. code-block:: none

            conv1-> conv2->conv3->yyy->zzz1->zzz2

        Suppose 'stage_idx=1', the structure of blocks in the stage would be:

        .. code-block:: none

            conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2

        If stages is missing, the plugin would be applied to all stages.

        Args:
            plugins (list[dict]): List of plugins cfg to build. The postfix is
                required if multiple same type plugins are inserted.
            stage_idx (int): Index of stage to build

        Returns:
            list[dict]: Plugins for current stage
        """
        stage_plugins = []
        for plugin in plugins:
            plugin = plugin.copy()
            stages = plugin.pop('stages', None)
            assert stages is None or len(stages) == self.num_stages
            # whether to insert plugin into current stage
            if stages is None or stages[stage_idx]:
                stage_plugins.append(plugin)

        return stage_plugins

    def make_res_layer(self, **kwargs):
        """Pack all blocks in a stage into a ``ResLayer``."""
        return ResLayer(**kwargs)

    @property
    def norm1(self):
        """nn.Module: the normalization layer named "norm1" """
        return getattr(self, self.norm1_name)

    def _make_stem_layer(self, in_channels, stem_channels):
        if self.deep_stem:
            self.stem = nn.Sequential(
                build_conv_layer(
                    self.conv_cfg,
                    in_channels,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    bias=False),
                build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
                nn.ReLU(inplace=True),
                build_conv_layer(
                    self.conv_cfg,
                    stem_channels // 2,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=False),
                build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
                nn.ReLU(inplace=True),
                build_conv_layer(
                    self.conv_cfg,
                    stem_channels // 2,
                    stem_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=False),
                build_norm_layer(self.norm_cfg, stem_channels)[1],
                nn.ReLU(inplace=True))
        else:
            self.conv1 = build_conv_layer(
                self.conv_cfg,
                in_channels,
                stem_channels,
                kernel_size=7,
                stride=2,
                padding=3,
                bias=False)
            self.norm1_name, norm1 = build_norm_layer(
                self.norm_cfg, stem_channels, postfix=1)
            self.add_module(self.norm1_name, norm1)
            self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            if self.deep_stem:
                self.stem.eval()
                for param in self.stem.parameters():
                    param.requires_grad = False
            else:
                self.norm1.eval()
                for m in [self.conv1, self.norm1]:
                    for param in m.parameters():
                        param.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = getattr(self, f'layer{i}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def forward(self, x):
        """Forward function."""
        if self.deep_stem:
            x = self.stem(x)
        else:
            x = self.conv1(x)
            x = self.norm1(x)
            x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
        return tuple(outs)

    def train(self, mode=True):
        """Convert the model into training mode while keep normalization layer
        freezed."""
        super(ResNet, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()


@BACKBONES.register_module()
class ResNetV1d(ResNet):
    r"""ResNetV1d variant described in `Bag of Tricks
    <https://arxiv.org/pdf/1812.01187.pdf>`_.

    Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in
    the input stem with three 3x3 convs. And in the downsampling block, a 2x2
    avg_pool with stride 2 is added before conv, whose stride is changed to 1.
    """

    def __init__(self, **kwargs):
        super(ResNetV1d, self).__init__(
            deep_stem=True, avg_down=True, **kwargs)