File size: 1,007 Bytes
f331fc9
31dcf39
 
 
9af04c6
31dcf39
 
b059834
f331fc9
 
31dcf39
 
 
 
b059834
31dcf39
 
 
 
 
 
 
 
bd0ff01
 
31dcf39
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import os
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

token = os.getenv("hf_token")

# Load the translation model and tokenizer from Hugging Face
model_name = "robzchhangte/enmz75-helcase"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, use_auth_token=token)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)

# Translation function with max_length=512
def translate(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model.generate(inputs["input_ids"], max_length=512)
    translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return translated_text

# Gradio Interface
interface = gr.Interface(
    fn=translate,
    inputs="text",
    outputs="text",
    title="English to Mizo Translator",
    examples=[["Hello, how are you?"], ["What is your name?"]]
)

# Launch the Gradio app locally
interface.launch(share=False)  # Set sharer=True to share your app