File size: 1,866 Bytes
4a832b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import streamlit as st
import pandas as pd

def run():
    st.set_page_config(page_title="Variables Table", layout="wide")
                       
    st.title("Variables Table")
    
    # Define the data for the variables table
    data = {
        "Variable Name": ["age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "num"],
        "Role": ["Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Feature", "Target"],
        "Type": ["Integer", "Categorical", "Categorical", "Integer", "Integer", "Categorical", "Categorical", "Integer", "Categorical", "Integer", "Categorical", "Integer", "Categorical", "Integer"],
        "Demographic": ["Age", "Sex", None, None, None, None, None, None, None, None, None, None, None, None],
        "Description": [None, None, None, "Resting blood pressure (on admission to the hospital)", "Serum cholestoral", "Fasting blood sugar > 120 mg/dl", None, "Maximum heart rate achieved", "Exercise induced angina", "ST depression induced by exercise relative to rest", None, "Number of major vessels (0-3) colored by flourosopy", None, "Diagnosis of heart disease"],
        "Units": ["years", None, None, "mm Hg", "mg/dl", None, None, "beats per minute", None, None, None, None, None, None],
        "Missing Values": ["no", "no", "no", "no", "no", "no", "no", "no", "no", "no", "no", "yes", "yes", "no"]
    }
    
    # Create DataFrame from the data
    df = pd.DataFrame(data)
    
    # Display the DataFrame as a table with larger size
    st.table(df.style.set_table_styles([{'selector': 'tr:hover','props': [('background-color', '#95caff')]}]))

    # Add a footer
    st.markdown("---")
    st.write("Made with ❤️ by Viga, Hanum, & Robit")

if __name__ == "__main__":
    run()