Spaces:
Sleeping
Sleeping
File size: 2,410 Bytes
b39726e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# Import necessary libraries
import streamlit as st
import joblib
# Load the trained model
model = joblib.load("./model-3.joblib")
# Define function to predict heart disease
def predict_heart_disease(sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7):
print([[sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7]])
prediction = model.predict([[sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7]])
return prediction
# Create the Streamlit web application
def main():
# Set title and description
st.title("Heart Disease Prediction")
st.write("This app predicts the presence of heart disease based on selected attributes.")
# Design user interface
sex = st.selectbox("Sex", ["Female", "Male"])
exang = st.selectbox("Exercise Induced Angina", ["No", "Yes"])
cp = st.selectbox("Chest Pain Type", ["Typical Angina", "Atypical Angina", "Non-Anginal Pain", "Asymptomatic"])
slope = st.selectbox("Slope of Peak Exercise ST Segment", ["Upsloping", "Flat", "Downsloping"])
thal = st.selectbox("Thal", ["Normal", "Fixed Defect", "Reversible Defect"])
# Map selected options to numerical values
sex_mapping = {"Female": 0, "Male": 1}
exang_mapping = {"No": 0, "Yes": 1}
cp_1_mapping = {"Typical Angina": 1, "Atypical Angina": 0, "Non-Anginal Pain": 0, "Asymptomatic": 0}
cp_2_mapping = {"Typical Angina": 0, "Atypical Angina": 1, "Non-Anginal Pain": 0, "Asymptomatic": 0}
cp_4_mapping = {"Typical Angina": 0, "Atypical Angina": 0, "Non-Anginal Pain": 0, "Asymptomatic": 1}
slope_1_mapping = {"Upsloping": 1, "Flat": 0, "Downsloping": 0}
slope_2_mapping = {"Upsloping": 0, "Flat": 1, "Downsloping": 0}
thal_3_mapping = {"Normal": 1, "Fixed Defect": 0, "Reversible Defect": 0}
thal_7_mapping = {"Normal": 0, "Fixed Defect": 0, "Reversible Defect": 1}
# Predict button
if st.button("Predict"):
result = predict_heart_disease(sex_mapping[sex], exang_mapping[exang], cp_1_mapping[cp], cp_2_mapping[cp], cp_4_mapping[cp], slope_1_mapping[slope], slope_2_mapping[slope], thal_3_mapping[thal], thal_7_mapping[thal])
if result == 1:
st.write("The model predicts that the patient has heart disease.")
else:
st.write("The model predicts that the patient does not have heart disease.")
# Run the Streamlit app
if __name__ == "__main__":
main() |