Spaces:
Running
Running
File size: 8,292 Bytes
27ddcef eb57397 27ddcef eb57397 27ddcef eb57397 27ddcef eb57397 27ddcef eb57397 27ddcef eb57397 27ddcef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# This configuration is for ESPnet2 to train VITS, which
# is truely end-to-end text-to-waveform model. To run
# this config, you need to specify "--tts_task gan_tts"
# option for tts.sh at least and use 22050 hz audio as
# the training data (mainly tested on LJspeech).
# This configuration tested on 4 GPUs (V100) with 32GB GPU
# memory. It takes around 2 weeks to finish the training
# but 100k iters model should generate reasonable results.
##########################################################
# TTS MODEL SETTING #
##########################################################
tts: vits
tts_conf:
# generator related
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: 128
global_channels: 256
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: "conv1d"
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: "rel_pos"
text_encoder_self_attention_layer_type: "rel_selfattn"
text_encoder_activation_type: "swish"
text_encoder_normalize_before: true
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: true
# NOTE(kan-bayashi): Conformer conv requires BatchNorm1d which causes
# errors when multiple GPUs in pytorch 1.7.1. Therefore, we disable
# it as a default. We need to consider the alternative normalization
# or different version pytorch may solve this issue.
use_conformer_conv_in_text_encoder: false
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales: [8, 8, 2, 2]
decoder_upsample_kernel_sizes: [16, 16, 4, 4]
decoder_resblock_kernel_sizes: [3, 7, 11]
decoder_resblock_dilations: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
use_weight_norm_in_decoder: true
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: true
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: true
use_only_mean_in_flow: true
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
# discriminator related
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: "AvgPool1d"
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [15, 41, 5, 3]
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: True
downsample_scales: [2, 2, 4, 4, 1]
nonlinear_activation: "LeakyReLU"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
follow_official_norm: False
periods: [2, 3, 5, 7, 11]
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [5, 3]
channels: 32
downsample_scales: [3, 3, 3, 3, 1]
max_downsample_channels: 1024
bias: True
nonlinear_activation: "LeakyReLU"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
# loss function related
generator_adv_loss_params:
average_by_discriminators: false # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
discriminator_adv_loss_params:
average_by_discriminators: false # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
feat_match_loss_params:
average_by_discriminators: false # whether to average loss value by #discriminators
average_by_layers: false # whether to average loss value by #layers of each discriminator
include_final_outputs: true # whether to include final outputs for loss calculation
mel_loss_params:
fs: 22050 # must be the same as the training data
n_fft: 1024 # fft points
hop_length: 256 # hop size
win_length: null # window length
window: hann # window type
n_mels: 80 # number of Mel basis
fmin: 0 # minimum frequency for Mel basis
fmax: null # maximum frequency for Mel basis
log_base: null # null represent natural log
lambda_adv: 1.0 # loss scaling coefficient for adversarial loss
lambda_mel: 45.0 # loss scaling coefficient for Mel loss
lambda_feat_match: 2.0 # loss scaling coefficient for feat match loss
lambda_dur: 1.0 # loss scaling coefficient for duration loss
lambda_kl: 1.0 # loss scaling coefficient for KL divergence loss
# others
sampling_rate: 22050 # needed in the inference for saving wav
cache_generator_outputs: true # whether to cache generator outputs in the training
##########################################################
# OPTIMIZER & SCHEDULER SETTING #
##########################################################
# optimizer setting for generator
optim: adamw
optim_conf:
lr: 2.0e-4
betas: [0.8, 0.99]
eps: 1.0e-9
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
# optimizer setting for discriminator
optim2: adamw
optim2_conf:
lr: 2.0e-4
betas: [0.8, 0.99]
eps: 1.0e-9
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: false # whether to start updating generator first
##########################################################
# OTHER TRAINING SETTING #
##########################################################
#num_iters_per_epoch: 1000 # number of iterations per epoch
max_epoch: 30 # number of epochs
accum_grad: 1 # gradient accumulation
batch_bins: 1900000 # batch bins (feats_type=raw)
batch_type: numel # how to make batch
#batch_type: sorted # how to make batchbatch_size: 1
grad_clip: -1 # gradient clipping norm
grad_noise: false # whether to use gradient noise injection
sort_in_batch: descending # how to sort data in making batch
sort_batch: descending # how to sort created batches
num_workers: 1 # number of workers of data loader
use_amp: false # whether to use pytorch amp
train_dtype: float32
log_interval: 50 # log interval in iterations
keep_nbest_models: 10 # number of models to keep
num_att_plot: 3 # number of attention figures to be saved in every check
seed: 3407 # random seed number
patience: null # patience for early stopping
unused_parameters: true # needed for multi gpu case
best_model_criterion: # criterion to save the best models
- - train
- total_count
- max
cudnn_deterministic: false # setting to false accelerates the training speed but makes it non-deterministic
# in the case of GAN-TTS training, we strongly recommend setting to false
cudnn_benchmark: false # setting to true might acdelerate the training speed but sometimes decrease it
# therefore, we set to false as a default (recommend trying both cases)
|