Spaces:
Runtime error
Runtime error
File size: 16,918 Bytes
204eeac a2de186 204eeac 9a8a502 204eeac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionUpscalePipeline, DiffusionPipeline, DPMSolverMultistepScheduler,LMSDiscreteScheduler,DDIMScheduler,EulerDiscreteScheduler,PNDMScheduler,DDPMScheduler,EulerAncestralDiscreteScheduler
import gradio as gr
import torch
from PIL import Image
import random
state = None
current_steps = 25
# SD 2.1 is used
model_id = 'stabilityai/stable-diffusion-2-1'
# Schedulers Used
DPMS = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
EADS = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
LMSD = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
DDIM = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
EDS = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
PNMS = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
DDPM = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
scheduler_types={
"DPMS":DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler"),
"EADS":EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler"),
"LMSD":LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler"),
"DDIM":DDIMScheduler.from_pretrained(model_id, subfolder="scheduler"),
"EDS":EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler"),
"PNMS":PNDMScheduler.from_pretrained(model_id, subfolder="scheduler"),
"DDPM":DDPMScheduler.from_pretrained(model_id, subfolder="scheduler"),
}
# Creating Simple Customized pipeline
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
revision="fp16",
torch_dtype=torch.float16,
scheduler=DPMS
).to("cuda")
pipe.enable_attention_slicing()
# pipe.enable_xformers_memory_efficient_attention()
# Different Pipeline states
pipe_i2i = None
pipe_upscale = None
pipe_inpaint = None
attn_slicing_enabled = True
mem_eff_attn_enabled = False
# Different Modes of Inference (VideoGen : TODO)
modes = {
'txt2img': 'Text to Image',
'img2img': 'Image to Image',
'inpaint': 'Inpainting',
'upscale4x': 'Upscale',
'VideoGen':"Generation of Video"
}
###############################################################################
current_mode = modes['txt2img']
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def update_state(new_state):
global state
state = new_state
def update_state_info(old_state):
if state and state != old_state:
return gr.update(value=state)
def set_mem_optimizations(pipe):
if attn_slicing_enabled:
pipe.enable_attention_slicing()
else:
pipe.disable_attention_slicing()
###############################################################################
# Function for creating a new pipleline for Image to Image Generation.
def get_i2i_pipe(scheduler):
update_state("Loading image to image model...")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
revision="fp16" if torch.cuda.is_available() else "fp32",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler
)
set_mem_optimizations(pipe)
pipe.to("cuda")
return pipe
###############################################################################
# Function for creating a new pipleline for Inpaint Pipeline.
def get_inpaint_pipe():
update_state("Loading inpainting model...")
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
revision="fp16" if torch.cuda.is_available() else "fp32",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
).to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_attention_slicing()
# pipe.enable_xformers_memory_efficient_attention()
return pipe
###############################################################################
# Function for creating a new pipleline for Upscaling the image.
def get_upscale_pipe(scheduler):
update_state("Loading upscale model...")
pipe = StableDiffusionUpscalePipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler",
revision="fp16" if torch.cuda.is_available() else "fp32",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
set_mem_optimizations(pipe)
pipe.to("cuda")
return pipe
###############################################################################
def switch_attention_slicing(attn_slicing):
global attn_slicing_enabled
attn_slicing_enabled = attn_slicing
def switch_mem_eff_attn(mem_eff_attn):
global mem_eff_attn_enabled
mem_eff_attn_enabled = mem_eff_attn
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
###############################################################################
# Main Inference Function
def inference(inf_mode, prompt, n_images, guidance, steps, width=768, height=768, seed=0, img=None, strength=0.5, neg_prompt="", scheduler_mode=None):
update_state(" ")
SDD = scheduler_types[scheduler_mode]
SDD = scheduler_types.get(scheduler_mode)
print(SDD)
pipe.scheduler = SDD
global current_mode
if inf_mode != current_mode:
pipe.to("cuda" if inf_mode == modes['txt2img'] else "cpu")
if pipe_i2i is not None:
pipe_i2i.to("cuda" if inf_mode == modes['img2img'] else "cpu")
if pipe_inpaint is not None:
pipe_inpaint.to("cuda" if inf_mode == modes['inpaint'] else "cpu")
if pipe_upscale is not None:
pipe_upscale.to("cuda" if inf_mode == modes['upscale4x'] else "cpu")
current_mode = inf_mode
if seed == 0:
seed = random.randint(0, 2147483647)
generator = torch.Generator('cuda').manual_seed(seed)
prompt = prompt
try:
if inf_mode == modes['txt2img']:
return txt_to_img(prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), gr.update(visible=False, value=None)
elif inf_mode == modes['img2img']:
if img is None:
return None, gr.update(visible=True, value=error_str("Image is required for Image to Image mode"))
return img_to_img(prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), gr.update(visible=False, value=None)
elif inf_mode == modes['inpaint']:
if img is None:
return None, gr.update(visible=True, value=error_str("Image is required for Inpainting mode"))
return inpaint(prompt, n_images, neg_prompt, img, guidance, steps, width, height, generator, seed), gr.update(visible=False, value=None)
elif inf_mode == modes['upscale4x']:
if img is None:
return None, gr.update(visible=True, value=error_str("Image is required for Upscale mode"))
return upscale(prompt, n_images, neg_prompt, img, guidance, steps, generator), gr.update(visible=False, value=None)
# elif inf_mode == modes['VideoGen']:
# if img is None:
# return None, gr.update(visible=True, value=error_str("Image is required for Video Generation"))
# return upscale(prompt, n_images, neg_prompt, img, guidance, steps, generator, seed), gr.update(visible=False, value=None)
except Exception as e:
return None, gr.update(visible=True, value=error_str(e))
###############################################################################
# Text To Image
def txt_to_img(prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
result = pipe(
prompt,
num_images_per_prompt = n_images,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator,
callback=pipe_callback).images
update_state(f"Done. Seed: {seed}")
return result
###############################################################################
# Image To image
def img_to_img(prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
global pipe_i2i
if pipe_i2i is None:
pipe_i2i = get_i2i_pipe(DPMS)
img = img['image']
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe_i2i(
prompt,
num_images_per_prompt = n_images,
negative_prompt = neg_prompt,
image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
# width = width,
# height = height,
generator = generator,
callback=pipe_callback).images
update_state(f"Done. Seed: {seed}")
return result
###############################################################################
# Inpaint
def inpaint(prompt, n_images, neg_prompt, img, guidance, steps, width, height, generator, seed):
global pipe_inpaint
if pipe_inpaint is None:
pipe_inpaint = get_inpaint_pipe()
inp_img = img['image']
mask = img['mask']
inp_img = square_padding(inp_img)
mask = square_padding(mask)
inp_img = inp_img.resize((512, 512))
mask = mask.resize((512, 512))
result = pipe_inpaint(
prompt,
image = inp_img,
mask_image = mask,
num_images_per_prompt = n_images,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
generator = generator,
callback=pipe_callback).images
update_state(f"Done. Seed: {seed}")
return result
def square_padding(img):
width, height = img.size
if width == height:
return img
new_size = max(width, height)
new_img = Image.new('RGB', (new_size, new_size), (0, 0, 0, 255))
new_img.paste(img, ((new_size - width) // 2, (new_size - height) // 2))
return new_img
###############################################################################
# Upscale
def upscale(prompt, n_images, neg_prompt, img, guidance, steps, generator):
global pipe_upscale
if pipe_upscale is None:
pipe_upscale = get_upscale_pipe(DPMS)
img = img['image']
return upscale_tiling(prompt, neg_prompt, img, guidance, steps, generator)
###############################################################################
# Upscale
def upscale_tiling(prompt, neg_prompt, img, guidance, steps, generator):
width, height = img.size
# calculate the padding needed to make the image dimensions a multiple of 128
padding_x = 128 - (width % 128) if width % 128 != 0 else 0
padding_y = 128 - (height % 128) if height % 128 != 0 else 0
# create a white image of the right size to be used as padding
padding_img = Image.new('RGB', (padding_x, padding_y), color=(255, 255, 255, 0))
# paste the padding image onto the original image to add the padding
img.paste(padding_img, (width, height))
# update the image dimensions to include the padding
width += padding_x
height += padding_y
if width > 128 or height > 128:
num_tiles_x = int(width / 128)
num_tiles_y = int(height / 128)
upscaled_img = Image.new('RGB', (img.size[0] * 4, img.size[1] * 4))
for x in range(num_tiles_x):
for y in range(num_tiles_y):
update_state(f"Upscaling tile {x * num_tiles_y + y + 1}/{num_tiles_x * num_tiles_y}")
tile = img.crop((x * 128, y * 128, (x + 1) * 128, (y + 1) * 128))
upscaled_tile = pipe_upscale(
prompt="",
image=tile,
num_inference_steps=steps,
guidance_scale=guidance,
generator=generator,
).images[0]
upscaled_img.paste(upscaled_tile, (x * upscaled_tile.size[0], y * upscaled_tile.size[1]))
return [upscaled_img]
else:
return pipe_upscale(
prompt=prompt,
image=img,
num_inference_steps=steps,
guidance_scale=guidance,
negative_prompt = neg_prompt,
generator=generator,
).images
# Mode Change
def on_mode_change(mode):
return gr.update(visible = mode in (modes['img2img'], modes['inpaint'], modes['upscale4x'])), \
gr.update(visible = mode == modes['inpaint']), \
gr.update(visible = mode == modes['upscale4x']), \
gr.update(visible = mode == modes['img2img'])
def on_steps_change(steps):
global current_steps
current_steps = steps
###############################################################################
# Gradio UI
css = """#primary {color: yellow} #main-div {color:#2B0230} .main-div div{display:flex;flex-direction:column;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f""" Genie : Stable Diffusion """
)
with gr.Row(elem_id='main-div'):
with gr.Column(scale=100):
inf_mode = gr.Radio(label="Modes", choices=list(modes.values())[:4], value=modes['txt2img']) # TODO remove [:3] limit
with gr.Group(visible=False) as i2i_options:
image = gr.Image(label="Image", height=128, type="pil", tool='sketch')
inpaint_info = gr.Markdown("Inpainting resizes and pads images to 512x512", visible=False)
upscale_info = gr.Markdown("""Best for small images (128x128 or smaller).
Bigger images will be sliced into 128x128 tiles which will be upscaled individually.
This is done to avoid running out of GPU memory.""", visible=False)
videogen_info = gr.Markdown(""" Video Generation : TODO """)
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
choose_scheduler = gr.Dropdown(["DPMS","EADS","LMSD","DDIM","EDS","PNMS","DDPM"])
n_images = gr.Slider(label="Number of images", value=1, minimum=1, maximum=10, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=current_steps, minimum=1, maximum=100, step=.5)
with gr.Row():
width = gr.Slider(label="Width", value=768, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=768, minimum=64, maximum=1024, step=8)
with gr.Column(scale=100):
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"enter something").style(container=True)
gallery = gr.Gallery(label="Generated images", show_label=False).style(grid=[2], height="auto")
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
generate = gr.Button(value="Generate", elem_id="primary").style(rounded=(False, True, True, False),)
error_output = gr.Markdown(visible=False)
with gr.Row():
with gr.Column(scale=100):
seed = gr.Slider(0, 2147483647, label='Seed', value=456785, step=1)
with gr.Accordion("Memory optimization"):
attn_slicing = gr.Checkbox(label="Attention slicing", value=attn_slicing_enabled)
inf_mode.change(on_mode_change, inputs=[inf_mode], outputs=[i2i_options, inpaint_info, upscale_info, strength], queue=False)
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
attn_slicing.change(lambda x: switch_attention_slicing(x), inputs=[attn_slicing], queue=False)
inputs = [inf_mode, prompt, n_images, guidance, steps, width, height, seed, image, strength, neg_prompt,choose_scheduler]
outputs = [gallery, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
gr.HTML(""" Developed by: <a href=\"https://github.com/robin025\">Robin Singh</a> """)
demo.queue()
demo.launch(debug=True, share=True, height=768) |