File size: 8,694 Bytes
fc091ae 24a98c3 fc091ae 92def50 fc091ae b4d24bd fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 dcf00c8 24a98c3 dcf00c8 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 92def50 24a98c3 b4d24bd 24a98c3 fc091ae 24a98c3 fc091ae b4d24bd fc091ae 24a98c3 92def50 fc091ae 92def50 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 92def50 24a98c3 92def50 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae dcf00c8 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 92def50 24a98c3 fc091ae 24a98c3 fc091ae 92def50 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 fc091ae 24a98c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""
LightRAG Rerank Integration Example
This example demonstrates how to use rerank functionality with LightRAG
to improve retrieval quality across different query modes.
Configuration Required:
1. Set your LLM API key and base URL in llm_model_func()
2. Set your embedding API key and base URL in embedding_func()
3. Set your rerank API key and base URL in the rerank configuration
4. Or use environment variables (.env file):
- RERANK_MODEL=your_rerank_model
- RERANK_BINDING_HOST=your_rerank_endpoint
- RERANK_BINDING_API_KEY=your_rerank_api_key
Note: Rerank is now controlled per query via the 'enable_rerank' parameter (default: True)
"""
import asyncio
import os
import numpy as np
from lightrag import LightRAG, QueryParam
from lightrag.rerank import custom_rerank, RerankModel
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc, setup_logger
from lightrag.kg.shared_storage import initialize_pipeline_status
# Set up your working directory
WORKING_DIR = "./test_rerank"
setup_logger("test_rerank")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key="your_llm_api_key_here",
base_url="https://api.your-llm-provider.com/v1",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model="text-embedding-3-large",
api_key="your_embedding_api_key_here",
base_url="https://api.your-embedding-provider.com/v1",
)
async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs):
"""Custom rerank function with all settings included"""
return await custom_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-rerank-provider.com/v1/rerank",
api_key="your_rerank_api_key_here",
top_n=top_n or 10,
**kwargs,
)
async def create_rag_with_rerank():
"""Create LightRAG instance with rerank configuration"""
# Get embedding dimension
test_embedding = await embedding_func(["test"])
embedding_dim = test_embedding.shape[1]
print(f"Detected embedding dimension: {embedding_dim}")
# Method 1: Using custom rerank function
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=8192,
func=embedding_func,
),
# Rerank Configuration - provide the rerank function
rerank_model_func=my_rerank_func,
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def create_rag_with_rerank_model():
"""Alternative: Create LightRAG instance using RerankModel wrapper"""
# Get embedding dimension
test_embedding = await embedding_func(["test"])
embedding_dim = test_embedding.shape[1]
print(f"Detected embedding dimension: {embedding_dim}")
# Method 2: Using RerankModel wrapper
rerank_model = RerankModel(
rerank_func=custom_rerank,
kwargs={
"model": "BAAI/bge-reranker-v2-m3",
"base_url": "https://api.your-rerank-provider.com/v1/rerank",
"api_key": "your_rerank_api_key_here",
},
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=8192,
func=embedding_func,
),
rerank_model_func=rerank_model.rerank,
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def test_rerank_with_different_settings():
"""
Test rerank functionality with different enable_rerank settings
"""
print("π Setting up LightRAG with Rerank functionality...")
rag = await create_rag_with_rerank()
# Insert sample documents
sample_docs = [
"Reranking improves retrieval quality by re-ordering documents based on relevance.",
"LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
"Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
"Natural language processing has evolved with large language models and transformers.",
"Machine learning algorithms can learn patterns from data without explicit programming.",
]
print("π Inserting sample documents...")
await rag.ainsert(sample_docs)
query = "How does reranking improve retrieval quality?"
print(f"\nπ Testing query: '{query}'")
print("=" * 80)
# Test with rerank enabled (default)
print("\nπ Testing with enable_rerank=True (default):")
result_with_rerank = await rag.aquery(
query,
param=QueryParam(
mode="naive",
top_k=10,
chunk_top_k=5,
enable_rerank=True, # Explicitly enable rerank
),
)
print(f" Result length: {len(result_with_rerank)} characters")
print(f" Preview: {result_with_rerank[:100]}...")
# Test with rerank disabled
print("\nπ Testing with enable_rerank=False:")
result_without_rerank = await rag.aquery(
query,
param=QueryParam(
mode="naive",
top_k=10,
chunk_top_k=5,
enable_rerank=False, # Disable rerank
),
)
print(f" Result length: {len(result_without_rerank)} characters")
print(f" Preview: {result_without_rerank[:100]}...")
# Test with default settings (enable_rerank defaults to True)
print("\nπ Testing with default settings (enable_rerank defaults to True):")
result_default = await rag.aquery(
query, param=QueryParam(mode="naive", top_k=10, chunk_top_k=5)
)
print(f" Result length: {len(result_default)} characters")
print(f" Preview: {result_default[:100]}...")
async def test_direct_rerank():
"""Test rerank function directly"""
print("\nπ§ Direct Rerank API Test")
print("=" * 40)
documents = [
{"content": "Reranking significantly improves retrieval quality"},
{"content": "LightRAG supports advanced reranking capabilities"},
{"content": "Vector search finds semantically similar documents"},
{"content": "Natural language processing with modern transformers"},
{"content": "The quick brown fox jumps over the lazy dog"},
]
query = "rerank improve quality"
print(f"Query: '{query}'")
print(f"Documents: {len(documents)}")
try:
reranked_docs = await custom_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-rerank-provider.com/v1/rerank",
api_key="your_rerank_api_key_here",
top_n=3,
)
print("\nβ
Rerank Results:")
for i, doc in enumerate(reranked_docs):
score = doc.get("rerank_score", "N/A")
content = doc.get("content", "")[:60]
print(f" {i+1}. Score: {score:.4f} | {content}...")
except Exception as e:
print(f"β Rerank failed: {e}")
async def main():
"""Main example function"""
print("π― LightRAG Rerank Integration Example")
print("=" * 60)
try:
# Test rerank with different enable_rerank settings
await test_rerank_with_different_settings()
# Test direct rerank
await test_direct_rerank()
print("\nβ
Example completed successfully!")
print("\nπ‘ Key Points:")
print(" β Rerank is now controlled per query via 'enable_rerank' parameter")
print(" β Default value for enable_rerank is True")
print(" β Rerank function is configured at LightRAG initialization")
print(" β Per-query enable_rerank setting overrides default behavior")
print(
" β If enable_rerank=True but no rerank model is configured, a warning is issued"
)
print(" β Monitor API usage and costs when using rerank services")
except Exception as e:
print(f"\nβ Example failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(main())
|