File size: 2,013 Bytes
			
			| 577f5ec 8b3b01c 577f5ec 0553d6a 577f5ec 8b3b01c 577f5ec 275e33e 8b3b01c 577f5ec 8b3b01c 275e33e 8b3b01c 275e33e 8b3b01c 275e33e 8b3b01c 275e33e 8b3b01c 275e33e 8b3b01c 275e33e 8b3b01c | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | import os
import logging
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
WORKING_DIR = "./dickens"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)
api_key = os.environ.get("ZHIPUAI_API_KEY")
if api_key is None:
    raise Exception("Please set ZHIPU_API_KEY in your environment")
async def initialize_rag():
    rag = LightRAG(
        working_dir=WORKING_DIR,
        llm_model_func=zhipu_complete,
        llm_model_name="glm-4-flashx",  # Using the most cost/performance balance model, but you can change it here.
        llm_model_max_async=4,
        llm_model_max_token_size=32768,
        embedding_func=EmbeddingFunc(
            embedding_dim=2048,  # Zhipu embedding-3 dimension
            max_token_size=8192,
            func=lambda texts: zhipu_embedding(texts),
        ),
    )
    await rag.initialize_storages()
    await initialize_pipeline_status()
    return rag
def main():
    # Initialize RAG instance
    rag = asyncio.run(initialize_rag())
    with open("./book.txt", "r", encoding="utf-8") as f:
        rag.insert(f.read())
    # Perform naive search
    print(
        rag.query(
            "What are the top themes in this story?", param=QueryParam(mode="naive")
        )
    )
    # Perform local search
    print(
        rag.query(
            "What are the top themes in this story?", param=QueryParam(mode="local")
        )
    )
    # Perform global search
    print(
        rag.query(
            "What are the top themes in this story?", param=QueryParam(mode="global")
        )
    )
    # Perform hybrid search
    print(
        rag.query(
            "What are the top themes in this story?", param=QueryParam(mode="hybrid")
        )
    )
if __name__ == "__main__":
    main()
 | 
