File size: 13,046 Bytes
e9c17d3
 
20d5a6e
e9c17d3
 
 
 
 
 
 
 
098fe5e
5d78930
e9c17d3
098fe5e
 
 
f92022d
b70a510
 
 
 
 
2899fc4
25287b8
20d5a6e
e9c17d3
 
 
e5f9f74
 
b70a510
 
556f361
e911ecd
22483ea
 
8aa0a5e
b89f76b
 
 
8aa0a5e
e911ecd
9e71115
 
 
 
 
 
 
 
 
 
 
 
 
e9c17d3
556f361
b70a510
 
 
 
 
e5f9f74
 
b70a510
 
 
9aa18ad
5d78930
b70a510
 
 
 
 
9aa18ad
1372c05
 
 
b70a510
 
 
 
 
 
9aa18ad
1372c05
b70a510
e9c17d3
44241d0
eaa7c14
 
 
 
 
 
 
6334978
f7fd237
 
e9c17d3
b324f6f
e9c17d3
 
 
 
 
 
 
 
 
 
 
 
 
 
5d78930
d5e3b99
e9c17d3
 
 
 
 
 
b70a510
 
e9c17d3
 
 
 
 
 
 
e3ae7ea
 
 
b5cae37
 
 
 
e9c17d3
556f361
b70a510
 
8a706cb
 
 
 
 
 
 
 
 
 
 
 
 
e9c17d3
 
 
b70a510
 
 
e9c17d3
 
 
 
eaa7c14
 
 
 
 
e9c17d3
 
 
 
b70a510
 
5d78930
e9c17d3
 
 
 
 
44241d0
eaa7c14
 
 
 
 
 
 
e9c17d3
 
 
 
 
556f361
8a706cb
b70a510
 
 
8a706cb
 
 
e9c17d3
 
 
a664893
eaa7c14
 
 
 
 
 
 
e9c17d3
b70a510
 
8a706cb
 
 
 
 
25287b8
8a706cb
 
 
b70a510
 
556f361
8a706cb
556f361
8a706cb
 
e9c17d3
 
 
05d541c
 
a02a230
 
9aa18ad
a02a230
 
 
 
 
 
 
 
 
 
 
1372c05
b70a510
e5f9f74
b70a510
 
7256f16
b70a510
 
05d541c
9aa18ad
b70a510
 
 
 
05d541c
 
fcdd61e
d42c91b
 
 
 
 
 
 
 
 
 
 
 
0df4f46
 
 
 
 
 
d42c91b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0df4f46
 
 
 
 
 
 
 
 
dfd562e
 
 
4e02c34
dfd562e
 
 
 
eaa7c14
 
 
4e02c34
dfd562e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e02c34
 
 
dfd562e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import asyncio
import os
from typing import Any, final
from dataclasses import dataclass
import numpy as np
import time

from lightrag.utils import (
    logger,
    compute_mdhash_id,
)
import pipmaster as pm
from lightrag.base import BaseVectorStorage

if not pm.is_installed("nano-vectordb"):
    pm.install("nano-vectordb")

from nano_vectordb import NanoVectorDB
from .shared_storage import (
    get_storage_lock,
    get_update_flag,
    set_all_update_flags,
)


@final
@dataclass
class NanoVectorDBStorage(BaseVectorStorage):
    def __post_init__(self):
        # Initialize basic attributes
        self._client = None
        self._storage_lock = None
        self.storage_updated = None

        # Use global config value if specified, otherwise use default
        kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
        cosine_threshold = kwargs.get("cosine_better_than_threshold")
        if cosine_threshold is None:
            raise ValueError(
                "cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
            )
        self.cosine_better_than_threshold = cosine_threshold

        working_dir = self.global_config["working_dir"]
        if self.workspace:
            # Include workspace in the file path for data isolation
            workspace_dir = os.path.join(working_dir, self.workspace)
            os.makedirs(workspace_dir, exist_ok=True)
            self._client_file_name = os.path.join(
                workspace_dir, f"vdb_{self.namespace}.json"
            )
        else:
            # Default behavior when workspace is empty
            self._client_file_name = os.path.join(
                working_dir, f"vdb_{self.namespace}.json"
            )
        self._max_batch_size = self.global_config["embedding_batch_num"]

        self._client = NanoVectorDB(
            self.embedding_func.embedding_dim,
            storage_file=self._client_file_name,
        )

    async def initialize(self):
        """Initialize storage data"""
        # Get the update flag for cross-process update notification
        self.storage_updated = await get_update_flag(self.namespace)
        # Get the storage lock for use in other methods
        self._storage_lock = get_storage_lock(enable_logging=False)

    async def _get_client(self):
        """Check if the storage should be reloaded"""
        # Acquire lock to prevent concurrent read and write
        async with self._storage_lock:
            # Check if data needs to be reloaded
            if self.storage_updated.value:
                logger.info(
                    f"Process {os.getpid()} reloading {self.namespace} due to update by another process"
                )
                # Reload data
                self._client = NanoVectorDB(
                    self.embedding_func.embedding_dim,
                    storage_file=self._client_file_name,
                )
                # Reset update flag
                self.storage_updated.value = False

            return self._client

    async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
        """
        Importance notes:
        1. Changes will be persisted to disk during the next index_done_callback
        2. Only one process should updating the storage at a time before index_done_callback,
           KG-storage-log should be used to avoid data corruption
        """

        logger.debug(f"Inserting {len(data)} to {self.namespace}")
        if not data:
            return

        current_time = int(time.time())
        list_data = [
            {
                "__id__": k,
                "__created_at__": current_time,
                **{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
            }
            for k, v in data.items()
        ]
        contents = [v["content"] for v in data.values()]
        batches = [
            contents[i : i + self._max_batch_size]
            for i in range(0, len(contents), self._max_batch_size)
        ]

        # Execute embedding outside of lock to avoid long lock times
        embedding_tasks = [self.embedding_func(batch) for batch in batches]
        embeddings_list = await asyncio.gather(*embedding_tasks)

        embeddings = np.concatenate(embeddings_list)
        if len(embeddings) == len(list_data):
            for i, d in enumerate(list_data):
                d["__vector__"] = embeddings[i]
            client = await self._get_client()
            results = client.upsert(datas=list_data)
            return results
        else:
            # sometimes the embedding is not returned correctly. just log it.
            logger.error(
                f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
            )

    async def query(
        self, query: str, top_k: int, ids: list[str] | None = None
    ) -> list[dict[str, Any]]:
        # Execute embedding outside of lock to avoid improve cocurrent
        embedding = await self.embedding_func(
            [query], _priority=5
        )  # higher priority for query
        embedding = embedding[0]

        client = await self._get_client()
        results = client.query(
            query=embedding,
            top_k=top_k,
            better_than_threshold=self.cosine_better_than_threshold,
        )
        results = [
            {
                **dp,
                "id": dp["__id__"],
                "distance": dp["__metrics__"],
                "created_at": dp.get("__created_at__"),
            }
            for dp in results
        ]
        return results

    @property
    async def client_storage(self):
        client = await self._get_client()
        return getattr(client, "_NanoVectorDB__storage")

    async def delete(self, ids: list[str]):
        """Delete vectors with specified IDs

        Importance notes:
        1. Changes will be persisted to disk during the next index_done_callback
        2. Only one process should updating the storage at a time before index_done_callback,
           KG-storage-log should be used to avoid data corruption

        Args:
            ids: List of vector IDs to be deleted
        """
        try:
            client = await self._get_client()
            client.delete(ids)
            logger.debug(
                f"Successfully deleted {len(ids)} vectors from {self.namespace}"
            )
        except Exception as e:
            logger.error(f"Error while deleting vectors from {self.namespace}: {e}")

    async def delete_entity(self, entity_name: str) -> None:
        """
        Importance notes:
        1. Changes will be persisted to disk during the next index_done_callback
        2. Only one process should updating the storage at a time before index_done_callback,
           KG-storage-log should be used to avoid data corruption
        """

        try:
            entity_id = compute_mdhash_id(entity_name, prefix="ent-")
            logger.debug(
                f"Attempting to delete entity {entity_name} with ID {entity_id}"
            )

            # Check if the entity exists
            client = await self._get_client()
            if client.get([entity_id]):
                client.delete([entity_id])
                logger.debug(f"Successfully deleted entity {entity_name}")
            else:
                logger.debug(f"Entity {entity_name} not found in storage")
        except Exception as e:
            logger.error(f"Error deleting entity {entity_name}: {e}")

    async def delete_entity_relation(self, entity_name: str) -> None:
        """
        Importance notes:
        1. Changes will be persisted to disk during the next index_done_callback
        2. Only one process should updating the storage at a time before index_done_callback,
           KG-storage-log should be used to avoid data corruption
        """

        try:
            client = await self._get_client()
            storage = getattr(client, "_NanoVectorDB__storage")
            relations = [
                dp
                for dp in storage["data"]
                if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
            ]
            logger.debug(f"Found {len(relations)} relations for entity {entity_name}")
            ids_to_delete = [relation["__id__"] for relation in relations]

            if ids_to_delete:
                client = await self._get_client()
                client.delete(ids_to_delete)
                logger.debug(
                    f"Deleted {len(ids_to_delete)} relations for {entity_name}"
                )
            else:
                logger.debug(f"No relations found for entity {entity_name}")
        except Exception as e:
            logger.error(f"Error deleting relations for {entity_name}: {e}")

    async def index_done_callback(self) -> bool:
        """Save data to disk"""
        async with self._storage_lock:
            # Check if storage was updated by another process
            if self.storage_updated.value:
                # Storage was updated by another process, reload data instead of saving
                logger.warning(
                    f"Storage for {self.namespace} was updated by another process, reloading..."
                )
                self._client = NanoVectorDB(
                    self.embedding_func.embedding_dim,
                    storage_file=self._client_file_name,
                )
                # Reset update flag
                self.storage_updated.value = False
                return False  # Return error

        # Acquire lock and perform persistence
        async with self._storage_lock:
            try:
                # Save data to disk
                self._client.save()
                # Notify other processes that data has been updated
                await set_all_update_flags(self.namespace)
                # Reset own update flag to avoid self-reloading
                self.storage_updated.value = False
                return True  # Return success
            except Exception as e:
                logger.error(f"Error saving data for {self.namespace}: {e}")
                return False  # Return error

        return True  # Return success

    async def get_by_id(self, id: str) -> dict[str, Any] | None:
        """Get vector data by its ID

        Args:
            id: The unique identifier of the vector

        Returns:
            The vector data if found, or None if not found
        """
        client = await self._get_client()
        result = client.get([id])
        if result:
            dp = result[0]
            return {
                **dp,
                "id": dp.get("__id__"),
                "created_at": dp.get("__created_at__"),
            }
        return None

    async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
        """Get multiple vector data by their IDs

        Args:
            ids: List of unique identifiers

        Returns:
            List of vector data objects that were found
        """
        if not ids:
            return []

        client = await self._get_client()
        results = client.get(ids)
        return [
            {
                **dp,
                "id": dp.get("__id__"),
                "created_at": dp.get("__created_at__"),
            }
            for dp in results
        ]

    async def drop(self) -> dict[str, str]:
        """Drop all vector data from storage and clean up resources

        This method will:
        1. Remove the vector database storage file if it exists
        2. Reinitialize the vector database client
        3. Update flags to notify other processes
        4. Changes is persisted to disk immediately

        This method is intended for use in scenarios where all data needs to be removed,

        Returns:
            dict[str, str]: Operation status and message
            - On success: {"status": "success", "message": "data dropped"}
            - On failure: {"status": "error", "message": "<error details>"}
        """
        try:
            async with self._storage_lock:
                # delete _client_file_name
                if os.path.exists(self._client_file_name):
                    os.remove(self._client_file_name)

                self._client = NanoVectorDB(
                    self.embedding_func.embedding_dim,
                    storage_file=self._client_file_name,
                )

                # Notify other processes that data has been updated
                await set_all_update_flags(self.namespace)
                # Reset own update flag to avoid self-reloading
                self.storage_updated.value = False

                logger.info(
                    f"Process {os.getpid()} drop {self.namespace}(file:{self._client_file_name})"
                )
            return {"status": "success", "message": "data dropped"}
        except Exception as e:
            logger.error(f"Error dropping {self.namespace}: {e}")
            return {"status": "error", "message": str(e)}