File size: 13,046 Bytes
e9c17d3 20d5a6e e9c17d3 098fe5e 5d78930 e9c17d3 098fe5e f92022d b70a510 2899fc4 25287b8 20d5a6e e9c17d3 e5f9f74 b70a510 556f361 e911ecd 22483ea 8aa0a5e b89f76b 8aa0a5e e911ecd 9e71115 e9c17d3 556f361 b70a510 e5f9f74 b70a510 9aa18ad 5d78930 b70a510 9aa18ad 1372c05 b70a510 9aa18ad 1372c05 b70a510 e9c17d3 44241d0 eaa7c14 6334978 f7fd237 e9c17d3 b324f6f e9c17d3 5d78930 d5e3b99 e9c17d3 b70a510 e9c17d3 e3ae7ea b5cae37 e9c17d3 556f361 b70a510 8a706cb e9c17d3 b70a510 e9c17d3 eaa7c14 e9c17d3 b70a510 5d78930 e9c17d3 44241d0 eaa7c14 e9c17d3 556f361 8a706cb b70a510 8a706cb e9c17d3 a664893 eaa7c14 e9c17d3 b70a510 8a706cb 25287b8 8a706cb b70a510 556f361 8a706cb 556f361 8a706cb e9c17d3 05d541c a02a230 9aa18ad a02a230 1372c05 b70a510 e5f9f74 b70a510 7256f16 b70a510 05d541c 9aa18ad b70a510 05d541c fcdd61e d42c91b 0df4f46 d42c91b 0df4f46 dfd562e 4e02c34 dfd562e eaa7c14 4e02c34 dfd562e 4e02c34 dfd562e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import asyncio
import os
from typing import Any, final
from dataclasses import dataclass
import numpy as np
import time
from lightrag.utils import (
logger,
compute_mdhash_id,
)
import pipmaster as pm
from lightrag.base import BaseVectorStorage
if not pm.is_installed("nano-vectordb"):
pm.install("nano-vectordb")
from nano_vectordb import NanoVectorDB
from .shared_storage import (
get_storage_lock,
get_update_flag,
set_all_update_flags,
)
@final
@dataclass
class NanoVectorDBStorage(BaseVectorStorage):
def __post_init__(self):
# Initialize basic attributes
self._client = None
self._storage_lock = None
self.storage_updated = None
# Use global config value if specified, otherwise use default
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
working_dir = self.global_config["working_dir"]
if self.workspace:
# Include workspace in the file path for data isolation
workspace_dir = os.path.join(working_dir, self.workspace)
os.makedirs(workspace_dir, exist_ok=True)
self._client_file_name = os.path.join(
workspace_dir, f"vdb_{self.namespace}.json"
)
else:
# Default behavior when workspace is empty
self._client_file_name = os.path.join(
working_dir, f"vdb_{self.namespace}.json"
)
self._max_batch_size = self.global_config["embedding_batch_num"]
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
async def initialize(self):
"""Initialize storage data"""
# Get the update flag for cross-process update notification
self.storage_updated = await get_update_flag(self.namespace)
# Get the storage lock for use in other methods
self._storage_lock = get_storage_lock(enable_logging=False)
async def _get_client(self):
"""Check if the storage should be reloaded"""
# Acquire lock to prevent concurrent read and write
async with self._storage_lock:
# Check if data needs to be reloaded
if self.storage_updated.value:
logger.info(
f"Process {os.getpid()} reloading {self.namespace} due to update by another process"
)
# Reload data
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
# Reset update flag
self.storage_updated.value = False
return self._client
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
logger.debug(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
current_time = int(time.time())
list_data = [
{
"__id__": k,
"__created_at__": current_time,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
# Execute embedding outside of lock to avoid long lock times
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
if len(embeddings) == len(list_data):
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
client = await self._get_client()
results = client.upsert(datas=list_data)
return results
else:
# sometimes the embedding is not returned correctly. just log it.
logger.error(
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
)
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
) -> list[dict[str, Any]]:
# Execute embedding outside of lock to avoid improve cocurrent
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embedding[0]
client = await self._get_client()
results = client.query(
query=embedding,
top_k=top_k,
better_than_threshold=self.cosine_better_than_threshold,
)
results = [
{
**dp,
"id": dp["__id__"],
"distance": dp["__metrics__"],
"created_at": dp.get("__created_at__"),
}
for dp in results
]
return results
@property
async def client_storage(self):
client = await self._get_client()
return getattr(client, "_NanoVectorDB__storage")
async def delete(self, ids: list[str]):
"""Delete vectors with specified IDs
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
Args:
ids: List of vector IDs to be deleted
"""
try:
client = await self._get_client()
client.delete(ids)
logger.debug(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
async def delete_entity(self, entity_name: str) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
try:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
logger.debug(
f"Attempting to delete entity {entity_name} with ID {entity_id}"
)
# Check if the entity exists
client = await self._get_client()
if client.get([entity_id]):
client.delete([entity_id])
logger.debug(f"Successfully deleted entity {entity_name}")
else:
logger.debug(f"Entity {entity_name} not found in storage")
except Exception as e:
logger.error(f"Error deleting entity {entity_name}: {e}")
async def delete_entity_relation(self, entity_name: str) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
try:
client = await self._get_client()
storage = getattr(client, "_NanoVectorDB__storage")
relations = [
dp
for dp in storage["data"]
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
]
logger.debug(f"Found {len(relations)} relations for entity {entity_name}")
ids_to_delete = [relation["__id__"] for relation in relations]
if ids_to_delete:
client = await self._get_client()
client.delete(ids_to_delete)
logger.debug(
f"Deleted {len(ids_to_delete)} relations for {entity_name}"
)
else:
logger.debug(f"No relations found for entity {entity_name}")
except Exception as e:
logger.error(f"Error deleting relations for {entity_name}: {e}")
async def index_done_callback(self) -> bool:
"""Save data to disk"""
async with self._storage_lock:
# Check if storage was updated by another process
if self.storage_updated.value:
# Storage was updated by another process, reload data instead of saving
logger.warning(
f"Storage for {self.namespace} was updated by another process, reloading..."
)
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
# Reset update flag
self.storage_updated.value = False
return False # Return error
# Acquire lock and perform persistence
async with self._storage_lock:
try:
# Save data to disk
self._client.save()
# Notify other processes that data has been updated
await set_all_update_flags(self.namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
return True # Return success
except Exception as e:
logger.error(f"Error saving data for {self.namespace}: {e}")
return False # Return error
return True # Return success
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
client = await self._get_client()
result = client.get([id])
if result:
dp = result[0]
return {
**dp,
"id": dp.get("__id__"),
"created_at": dp.get("__created_at__"),
}
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
client = await self._get_client()
results = client.get(ids)
return [
{
**dp,
"id": dp.get("__id__"),
"created_at": dp.get("__created_at__"),
}
for dp in results
]
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will:
1. Remove the vector database storage file if it exists
2. Reinitialize the vector database client
3. Update flags to notify other processes
4. Changes is persisted to disk immediately
This method is intended for use in scenarios where all data needs to be removed,
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
# delete _client_file_name
if os.path.exists(self._client_file_name):
os.remove(self._client_file_name)
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
# Notify other processes that data has been updated
await set_all_update_flags(self.namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
logger.info(
f"Process {os.getpid()} drop {self.namespace}(file:{self._client_file_name})"
)
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping {self.namespace}: {e}")
return {"status": "error", "message": str(e)}
|