File size: 3,873 Bytes
37af9c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import imageio
import pickle
import tensorflow as tf
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import matplotlib.ticker as mticker
from cartopy.mpl.gridliner import LATITUDE_FORMATTER, LONGITUDE_FORMATTER
import shapefile as shp
from matplotlib import animation
from IPython.display import HTML

def get_array(source, scaler_dict):

    reader = imageio.get_reader(source)

    source_video = []

    try:
        for im in reader:
            source_video.append(im)
    except RuntimeError:
        pass

    reader.close()

    scaler_path = scaler_dict[source[-14:]]

    with open(scaler_path, 'rb') as f:
        sc = pickle.load(f)

    data = np.array(source_video)[:,:,:,0]
    data = sc.inverse_transform(data)
    data = np.swapaxes(data, 0, 2)
    data = np.swapaxes(data, 0, 1)

    X = data[:,:,0:12]
    y = data[:,:,12:]

    return X, y

def get_slices(values, slices):

    dim_size = len(values)
    idx_step = int(dim_size/slices)

    slices_list = []

    for i in range(idx_step, dim_size, idx_step):

        slices_list.append(np.round(values[i], 2))
    
    return slices_list

def save_video(X, threshold=0, file_path = 'data/video.mp4'):

    # Get vmax
    var = X.copy()

    var[np.isnan(var)] = 0
    var[var<=0] = 0

    counts, bins = np.histogram(var[:])

    value = counts[counts>np.median(counts)][-1]
    idx = np.where(counts==value)[0][0]

    vmax = np.round(bins[idx])
    
    # Latitude and longitude
    lon   = np.loadtxt('data/longitude.txt')
    lat   = np.loadtxt('data/latitude.txt')

    area  = [lon.min(),lon.max(),lat.min(),lat.max()]

    lat_list = get_slices(lat, 4)
    lon_list = get_slices(lon, 6)

    # Visualization
    ims = []
    fig = plt.figure(figsize=(7,5))
    ax = plt.axes(projection=ccrs.PlateCarree())

    gl = ax.gridlines(crs=ccrs.PlateCarree(),
                    draw_labels=True,
                    linewidth=0.3,
                    color='black',
                    linestyle='--')

    gl.top_labels = False
    gl.right_labels = False
    gl.xlines = True
    gl.xlocator = mticker.FixedLocator(lon_list)
    gl.ylocator = mticker.FixedLocator(lat_list)
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER
    gl.xlabel_style = {'size':10, 'color':'black'}
    gl.ylabel_style = {'size':10, 'color':'black'}

    frames = X
    frames[frames<=threshold] = np.nan

    barra = np.arange(0, vmax+1, 5)

    for i in range(frames.shape[2]):
        im = plt.imshow(frames[..., i],
                        cmap=plt.cm.rainbow,
                        vmin=0,
                        vmax=vmax,
                        extent=area,
                        origin='lower',
                        animated=True)
        
        ims.append([im])

    cbar = plt.colorbar(ax=ax, pad=0.02, aspect=16, shrink=0.77)
    cbar.set_ticks(barra)
    cbar.set_label('mm/h')

    shapeID = shp.Reader("data/shapefile/regiao_sul.shp")

    for shape in shapeID.shapeRecords():
        point = np.array( shape.shape.points )
        dummy = plt.plot( point[:,0] , point[:,1], color="black", linewidth=0.5 ) # 1

    ani = animation.ArtistAnimation(fig, ims, interval=500, blit=True, repeat_delay=1000)

    FFwriter = animation.FFMpegWriter(fps=2)
    ani.save(file_path, writer = FFwriter)

    # ani.save(f'data/vis.gif', writer='pillow', fps=6)

    plt.close(ani._fig)
    HTML(ani.to_html5_video())

def make_predictions(X):

    filepath = "models/model.h5"
    model = tf.keras.models.load_model(filepath)

    X[np.isnan(X)] = 0

    X = np.expand_dims(X, axis=0)

    scaler_path = 'models/scaler.pkl'
    with open(scaler_path, 'rb') as f:
        sc = pickle.load(f)

    X = sc.transform(X)
    ypred = model.predict(X)
    print(ypred.shape)
    ypred = sc.inverse_transform(ypred)[0]
    print(ypred.shape)

    return ypred